The Ferroelectric and Electrical Properties of CaBi4Ti4O15 Thin Films Prepared by Sol-Gel Technology

Article Preview

Abstract:

In this study, thin films of CaBi4Ti4O15 with preferential crystal orientation were prepared by the chemical solution deposition (CSD) technique on a SiO2/Si substrate. The films consisted of a crystalline phase of bismuth-layer-structured dielectric. The as-deposited CaBi4Ti4O15 thin films were crystallized in a conventional furnace annealing (RTA) under the temperature of 700 to 800°C for 1min. Structural and morphological characterization of the CBT thin films were investigated by X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM). The impedance analyzer HP4294A and HP4156C semiconductor parameters analyzer were used to measurement capacitance voltage (C-V) characteristics and leakage current density of electric field (J-E) characteristics by metal-ferroelectric-insulator- semiconductor (MFIS) structure. By the experimental result the CBT thin film in electrical field 20V, annealing temperature in 750°C the CBT thin film leaks the electric current is 1.88x10-7 A/cm2 and the memory window is 1.2V. In addition, we found the strongest (119) peak of as-deposited thin films as the annealed temperature of 750°C

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

891-894

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Aurivillius: Ark. Kemi 1 (1949) 463.

Google Scholar

[2] A. R. James, G. S. Kumar, S. B. Suyanarayana, and T. Bhimasankaram: Ferroelectrics 216 (1998) 11.

Google Scholar

[3] T. Takeuchi, T. Tani, and Y. Saito: Jpn. J. Appl. Phys. 39 (2000) 5577.

Google Scholar

[4] J. S. Kim, S. S. Kim, J. K. Kim, and T. K. Song, Jpn. J. Appl. Phys. 41, 5497 (2002).

Google Scholar

[5] B. H. Park, B. S. Kang, S. D. Bu, T.W. Noh, J. Lee, and W. Jo, Nature (London) 401, 682 (1999).

Google Scholar

[6] T. Sato, T. Kuroiwa, K. Sugahara, and H. Ishiwara, Jpn. J. Appl. Phys. 41, 2105 (2002).

Google Scholar

[7] Y. Shimakawa, Y. Kubo, Y. Tauhi, T. Kamiyama, H. Asano, and F. Izumi, Appl. Phys. Lett. 77,2749 (2000).

Google Scholar

[8] J. M. Kim, D. S. Yoon and K. No, J. Materials Science, 29 (1994) 6599.

Google Scholar

[9] F. T. Wooten: Proc. IEEE 55, (1967) 564.

Google Scholar

[10] R. S. Muller and J. Conragan: IEEE Trans. Electron. Devies ED-12, (1965) 590.

Google Scholar

[11] S. S. Park and S. G.. Yoon: Jpn. J. Appl. Phys. 39 (2000) 1177.

Google Scholar

[12] W. S. Choi, B. S. Jang, Y. Roh, J. Yi and B. Hong: J. Non-Crystalline Solids 303 (2002) 190.

Google Scholar

[13] J. S. Kim and S. G. Yoon: J. Vac. Sci. Technol. B 18 (2000) 216.

Google Scholar

[14] A. D. Li, D. Wu, H. Q. Ling, M. Wang, Z. Liu and N. Ming: J. Crystal Growth 235 (2002) 394.

Google Scholar

[15] J. Li, L. Zhang, X. Yao and J. Wang: Ceramics International 30 (2004) 1509.

Google Scholar

[16] M. L. Calzada, A. Gonzalez, R. Jimenez, C. Alemany and J. Mendiola: J. European Ceramic Soc. 21 (2001) 1517. Fig. 1. The flow chart of chemical solution deposition (CSD) technique in this study. Fig. 2. The metal-insulator-insulator-semiconductor (MFIS) capacitor structure. Fig. 3.XRD patterns of CBT films deposited on SiO2/Si substrate was annealed at 700-800℃ for 1 min in oxygen atmosphere. Fig. 4. Surface observation of the as-deposited CBT thin films annealed at 700℃. Fig. 5. Surface observation of the as-deposited CBT thin films annealed at 750℃. Fig. 6. Surface observation of the as-deposited CBT thin films annealed at 800℃. Fig. 7.The J-V curves of CBT thin films annealed at different temperature. Fig. 8. The C-V curves for CBT thin films annealed at 700-800℃.

DOI: 10.31979/etd.wf7u-geuq

Google Scholar