[1]
G. Kerschen, K. Worden, A. F. Vakakis, et al. Past, present and future of nonlinear system identification in structural dynamics. MSSP, 2006, (20): 505-592.
DOI: 10.1016/j.ymssp.2005.04.008
Google Scholar
[2]
M. Feldman. Non-linear system vibration analysis using Hilbert transform-I. Free vibration analysis method FREEVIB,. MSSP, 1994, 8(2): 119-127.
DOI: 10.1006/mssp.1994.1011
Google Scholar
[3]
M. Feldman. Non-linear system vibration analysis using Hilbert transform-II. Forced vibration analysis method FORCEVIB,. MSSP, 1994, 8(2): 309-318.
DOI: 10.1006/mssp.1994.1023
Google Scholar
[4]
M. Feldman, I. Bucher and J. Rotberg. Experimental Identification of Nonlinearities under Free and Forced Vibration using the Hilbert Transform. Journal of Vibration and Control, 2009, 15(10): 1563-1579.
DOI: 10.1177/1077546308097270
Google Scholar
[5]
M. Feldman. Identification of weakly nonlinearities in multiple coupled oscillators. Journal of Sound and Vibration, 2007, (303): 353-370.
DOI: 10.1016/j.jsv.2007.01.028
Google Scholar
[6]
H. Elizaldea, M. Imregun, An explicit frequency response function formulation for multi-degree-of-freedom non-linear systems. MSSP, 2006, (20): 1867-1882.
DOI: 10.1016/j.ymssp.2005.12.009
Google Scholar
[7]
S. Bellizzi, P. Guillemain, R. Kronland-Martinet, Identification of coupled non-linear modes from free vibration using time-frequency representations. J. of Sound and Vibration, 2001, 243 (2): 191-213.
DOI: 10.1006/jsvi.2000.3407
Google Scholar
[8]
Staszewski W J. Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform. J. of sound and vibration, 1998, 214(4): 639-658.
DOI: 10.1006/jsvi.1998.1616
Google Scholar
[9]
Ta M N, Lardies J. Identification of weak nonlinearities on damping and stiffness by the continuous wavelet transform. J. of sound and vibration, 2006, 293: 16-37.
DOI: 10.1016/j.jsv.2005.09.021
Google Scholar
[10]
G. Kerschen, A.F. Vakakis, Y.S. Lee, D.M. McFarland and L.A. Bergman. Toward a fundamental understanding of the Hilbert–Huang transform in nonlinear structural dynamics. Journal of Vibration and Control, 2008, 14(1–2): 77-105.
DOI: 10.1177/1077546307079381
Google Scholar
[11]
P. Frank Pai. Nonlinear vibration characterization by signal decomposition. J. of Sound and Vibration 2007, (307): 527-544.
DOI: 10.1016/j.jsv.2007.06.056
Google Scholar
[12]
J.N. Yang, Y. Lei, S.W. Pan, N. Huang, System identification of linear structures based on Hilbert–Huang spectral analysis; Part 1: Normal modes. EESD, 2003, (32): 1443-1467.
DOI: 10.1002/eqe.287
Google Scholar
[13]
J.N. Yang, S. Lin, Hilbert–Huang based approach for structural damage detection. J. of EM, 2004, (130): 85-95.
Google Scholar
[14]
C. W. Poon, C. C. Chang. Identification of nonlinear elastic structures using empirical mode decomposition and nonlinear normal modes. Smart Structures and Systems, 2007, 3(4): 423-437.
DOI: 10.12989/sss.2007.3.4.423
Google Scholar
[15]
N. E. Huang, Z. Shen, S. R. Long, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London, Series A, 454 (1998), pp.903-995.
DOI: 10.1098/rspa.1998.0193
Google Scholar
[16]
S. W. Shaw, C. Pierre. Normal modes for nonlinear vibratory systems. J. of Sound and Vibration, 1993, 164 (1): 85-124.
DOI: 10.1006/jsvi.1993.1198
Google Scholar