Medium Optimisation for Improved Growth-Rate Inhibition of Microcystis Aeruginosa Exposed to AgBiO3 Using Response-Surface Methodology

Article Preview

Abstract:

Blooms of the Microcystis aeruginosa in water have been a long-standing problem for water quality and a human-health issue. Public concern for the inhibition of Microcystis aeruginosa has become increasingly urgent. AgBiO3 is an algaecide having good inhibitory effects on the growth of Microcystis aeruginosa with hydroxyl radicals generated by photocatalyst. The inhibition of Microcystis aeruginosa exposed to AgBiO3 was optimised using statistically-based experimental designs. The four variables, namely, ZnSO4, CaCl2, CuSO4 and NaNO3, were screened as significant effects and were further optimised to determine the optimum levels and their interactions. The optimal concentrations of variables for maximum inhibition were 0.24 mg/L ZnSO4, 125.94 mg/L CaCl2, 0.28 mg/L CuSO4 and 600 mg/L NaNO3. The maximum inhibition rate predicted by the model was 61.86%, in near-perfect agreement with the experimental value (60.07%), and significantly better than unoptimised medium (42.79%).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 255-260)

Pages:

2940-2948

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Roberto DP, Vincenzini M. Fems Microbiol Rev vol. 22 (1998), p.151

Google Scholar

[2] Koki N, Shibata T, Fujimoto K, Honjo T, Nakamura T. Aquaculture vol.218 (2003) ,p.601

Google Scholar

[3] Ressom R, Soong FS, Fitzgerald J, Turczynowicz L, Saadi O, Roder D,Maynard T in: Health effects of toxiccyanobacteria (Blue-green algae), National Health and Medical Research Council. The Australian Government Publishing Service, Canberra, Australia (1994)

Google Scholar

[4] Vezie C, Brient L, Sivonen K, Bertru G, Lefeuvre JC, Salonen MS. Microb Ecol vol.35(1994), p.126

Google Scholar

[5] Wang XL, G L, Liang SK, Han XR, Zhu CJ, Li YB. Harmful Algae vol.4 (2005), p.433

Google Scholar

[6] Zou C, Y C, Jae Y Patent oxide: CN1526475-A. (2004)

Google Scholar

[7] Ye FX, O A. Surf Coat Technol vol.160 (2002), p.62

Google Scholar

[8] Yu XJ, Zhou JY, Wang ZP, Cai WM. J Photochem Photobiol B: Biology. vol. 101 (2010), p.265

Google Scholar

[9] Ambati P, Ayyanna C. World J Microb Biot vol.17 (2001), p.331

Google Scholar

[10] Yu X, Hallett SG, Sheppard J, Watson AK. Appl Microbiol Biotechnol vol.47 (1997), p.301

Google Scholar

[11] Kalil SJ, Maugeri F, Rodrigues MI. vol.35 (2000), p.539

Google Scholar

[12] Annadurai G. Bioproc Biosyst Eng vol.23 (2000), p.451

Google Scholar

[13] Tanyildizi MS, Ozer D, Elibol M. Process Biochem vol.40 (2005), p.2291

Google Scholar

[14] Li C, Bai J, Cai Z, Ouyang F. J Biotechnol vol.93 (2002), p.27

Google Scholar

[15] Sunitha K, Lee JK, Oh TK. Bioprocess Eng vol.21 (1999), p.477

Google Scholar

[16] Lee SL, Chen WC. Enzyme Microb Tech vol.21 (1997), p.436

Google Scholar

[17] Wang Y, Lv F, Lu Z (2004). J Nanjing Agricultural University vol.27 (2004), p.89

Google Scholar

[18] Chang YN, Huang J, Lee C, Shih I, Tzeng YN. Enzyme Microb Tech vol.30 (2002), p.889

Google Scholar

[19] Wu HY, Zheng LX, Su J, Shi W. J Environmental and Occupational Medicine vol.22 (2005) , p.130

Google Scholar

[20] Ou MM, Zhou BX, Xie WJ, Jiang JH, Cai WM. J Environ Sci-China vol.16 (2004), p.934

Google Scholar

[21] Plackett RL, Burman JP. Biometrika vol.33 (1946), p.305

Google Scholar

[22] Radhouane K, Hichem C, Hajeur A, Belgacem N, Samir B. Biochem Eng J vol.46 (2009),p.306

Google Scholar

[23] Box GEP, Draper N. Empirical model-building and response surfaces. New York John Wiley (1987).

Google Scholar

[24] Wong PK, Chang L. Environ Poll vol.72 (1991),p .127

Google Scholar

[25] Du LF, Fu HL, Zou XD. J Integr Plant Biol vol.37 (1995), p.109

Google Scholar

[26] Su XR, Chi QH, Paul KC. Fisheries Sci vol.20 (2001), p.1

Google Scholar

[27] Su XR, Liu ZB, Chi QH, Paul K. Fisheries Sci vol.19 (2000), p.1

Google Scholar

[28] Lin ZP. Green gene for 21st Century. Beijing, Science Press, (2000)

Google Scholar

[29] Li PF, Liu ZL, Ge HT, Shen RJ, Shen H. J Nanjing University Mathematical Biquarterly vol.36 (2000), p.585

Google Scholar

[30] Qiu CE, Bi YH, Hu ZY. Acta Hydrobiologica Sinica vol.31 (2007), p.503

Google Scholar

[31] Wang X, Yin M, Xiao Z, Ma C, Lin Z, Wang PG, Xu P. Appl Microbiol Biotechnol vol. 76 (2007), p.321

Google Scholar

[32] Li X, Ouyang J, Xu Y, Chen M, Song X, Yong Q, Yu S. Bioresour Technol vol.100 (2009), p.3613

Google Scholar

[33] Xiao ZJ, Liu PH, Qin JY, Xu P. Appl Microbiol Biotechnol vol. 74 (2007), p.61

Google Scholar

[34] Rajesh S, Rajender K, Kiran B, Narsi RB. Biochem Engin J vol. 48 (2000), p.28

Google Scholar

[35] André IK, Cornell JA. Response surfaces: designs and analyses. Marcel Dekker Inc New York. (1996)

Google Scholar

[36] Avishek M, Goyal A. Bioresour Technol vol.99 (2008), p.3685

Google Scholar

[37] Wang ZW, Liu X. Bioresour Technol vol.99 (2008), p.8245

Google Scholar

[38] Haider MA, Pakshirajan K. Appl Biochem Biotechnol vol.141 (2007), p.377

Google Scholar

[39] Ravi KP, Goyal A. Bioresour Technol vol.99 (2008), p.7108

Google Scholar

[40] Muralidhar RV, Chirumamila RR, Marchant R, Nigam P. Biochem Eng J vol.9 (2001), pp.17-23.

Google Scholar