Raman Spectroscopic Characterization for Carbon Nanofibers Produced by Using Ferric Chloride of Different Concentration as Catalyst Precursor

Article Preview

Abstract:

Catalytic grown carbon nanofibers have been obtained from decomposition of ethanol over copper plate. Ferric chloride of different concentration was employed as the catalyst precursor. Scanning electron microscopy has shown that different morphologies of carbon nanofibers can be obtained by using different concentration of catalyst precursor solution. The results from the Raman spectroscopic characterization have also demonstrated that the graphitization of carbon nanofibers can be tailored by control of the concentration of catalyst precursor solution. When the information from these characterization are combined with that of the associated morphologies of the carbon nanofibers, it is possible to synthesize perfect carbon nanofibers.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 26-28)

Pages:

809-812

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Singh, T. Quested, C. B. Boothroyd, P. Thomas, I. A. Kinloch, A. I. Abou-Kandil and A. H. Windle: J. Phys. Chem. B Vol. 106 (2002), p.10915.

DOI: 10.1021/jp026159a

Google Scholar

[2] M. Endo, Y. A. Kim, T. Hayashi, Y. Fukai, K. Oshida, M. Terrones, T. Yanagisawa, S. Higaki and M. S. Dresselhaus: Appl. Phys. Lett. Vol. 80(7) (2002), p.1267.

DOI: 10.1063/1.1450264

Google Scholar

[3] A. Tanaka, S. H. Yoon and I. Mochida: Carbon Vol. 42 (2004), p.1291.

Google Scholar

[4] A. Tanaka, S. H. Yoon and I. Mochida: Carbon Vol. 42 (2004), p.591.

Google Scholar

[5] Z. Yu, D. Chen, B. TФ tdal and A. Holmen: Materials chemistry and physics Vol. 92 (2005), p.71.

Google Scholar

[6] E. Mendoza, S. J. Henley, C. H. P. Poa, V. Stolojan, G. Y. Chen, C. E. Giusca, J. D. Carey and S. R. P. Silva: Carbon Vol. 43 (2005), p.2215.

DOI: 10.1016/j.carbon.2005.03.032

Google Scholar

[7] M. A. Guillorn, A. V. Melechko, V. I. Merkulov, E. D. Ellis, C. L. Britton, M. L. Simpson, D. H. Lowndes and L. R. Baylor: Appl. Phys. Lett. Vol. 79(21) (2001), p.3506.

DOI: 10.1063/1.1419038

Google Scholar

[8] H. Ogihara, S. Takenaka, I. Yamanaka and K. Otsuka: Carbon Vol. 42 (2004), p.1609.

Google Scholar

[9] S. Lim, S. H. Yoon, I. Mochida and J. H. Chi: J. Phys. Chem. B Vol. 108 (2004), p.1533.

Google Scholar

[10] T. C. Chieu, M. S. Dresselhaus and M. Endo: Phys. Rev. B. Vol. 26(10) (1982), p.5867.

Google Scholar

[11] M. Endo, K. Nishimura, Y. A. Kim, K. Hakamada, T. Matushita, M. S. Dresselhaus and G. Dresselhaus: J. Mater. Res. Vol. 14(12) (1999), p.4474.

DOI: 10.1557/jmr.1999.0607

Google Scholar

[12] N. Kishore, S. Sachan, K. N. Rai and A. Kumar: Carbon Vol. 41 (2003), p.2961.

Google Scholar