Crack Closure and Shape Restoration Using NiTi Shape-Memory Alloy

Article Preview

Abstract:

Because of the high actuation stress and high recovery strain, NiTi shape-memory alloy (SMA) has been proposed for shape/position control and crack closure in structures for many years. In this paper, we demonstrate the feasibility to use NiTi SMA for not only crack closure, but also shape restoration in a silicon/nanoclay composite beam. Instead of embedding SMA into the beam, we use a piece of external SMA wire so that the expensive NiTi SMA can be reused. In addition, both shape restoration and crack closure can be achieved even when the beam is still in working condition, i.e., with external load applied.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 261-263)

Pages:

721-724

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Funakubo, Ed, in: Shape Memory Alloys, volume 1 of Precision Machinery and Robotics, Gordon and Breach Science Publishers (1987)

Google Scholar

[2] K. Otsuka and C.M. Wayman, Eds, in: Shape Memory Materials, Cambridge University Press (1998)

Google Scholar

[3] W. Huang: Mater. Des. Vol. 23 (2002), pp.11-9

Google Scholar

[4] S. Miyazaki, Y.Q. Fu and W.M. Huang, Eds, in: Thin Film Shape Memory Alloys: Fundamentals and Device Applications, Cambridge University Press (2009)

DOI: 10.1017/cbo9780511635366

Google Scholar

[5] T.W. Duerig, K.N. Melton, D. Stöckel and C.M. Wayman, in: Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann (1990)

Google Scholar

[6] I.P. Lipscomb and L.D.M. Nokes, in: The Application of Shape Memory Alloys in Medicine, Wiley (1996)

Google Scholar

[7] Pelton A, Hodgson D, Russell S and Duerig T 1997 SMST-97: Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies (California: SMST)

DOI: 10.31399/asm.cp.smst2022fm03

Google Scholar

[8] Baz A, Ro J, Mutua M and Gilheany J 1992 Active buckling control of Nitinol-reinforced composites beams, in ADPA/AIAA/ASME/SPIE Conference on active materials and adaptive structures-Session 10, Edited by: Knowles, G.J., 167-76

DOI: 10.1007/978-94-017-1903-2_4

Google Scholar

[9] Beauchamp C H, Nadolink R H, Dickinson S C and Dean L M 1992, Shape memory alloy adjustable camber (SMAAC) control surface, Proceedings of SPIE 1777 189-92

DOI: 10.1117/12.2298061

Google Scholar

[10] Files B and Olson GB 1997, Terminator 3: Biomimetic self-healing alloy composite, in SMST-97: Proceedings of the second international conference on shape memory and superelastic technologies (California: SMST) 281-6

DOI: 10.31399/asm.cp.smst2022fm03

Google Scholar

[11] G. Song, N. Ma and H.N. Li: Eng. Struct. Vol. 28 (2006), pp.1266-74

Google Scholar

[12] G. Zhou and P. Lloyd: Compos. Sci. Technol. Vol. 69 (2009), pp.2034-41

Google Scholar

[13] Y. Freed and J. Aboudi: Smart Mater. Struct. Vol. 17 (2008), 015046

Google Scholar

[14] M.S. Alam, M.A. Youssef and M. Nehdi: Can. J. Civ. Eng. Vol. 34 (2007), pp.1075-86

Google Scholar

[15] L. Janke, C. Czaderski, M. Motavalli and J. Ruth: Mater. Struct. Vol. 38 (2005), pp.578-92

Google Scholar

[16] B. Andrawes, M. Shin and N. Wierschem: J. Bridge Engrg. Vol. 15 (2010), pp.81-9

Google Scholar

[17] K. Hamada, F. Kawano and K. Asaoka K: Dent. Mater. J. Vol. 22 (2003), pp.160-7

Google Scholar

[18] D.S. Burton, X. Gao and L.C. Brinson: Mech. Mater. Vol. 38 (2006), pp.525-37

Google Scholar

[19] K. Shahin, G.P. Zou and F. Taheri: Mech. Adv. Mater. Struct. Vol. 12 (2005), pp.425-35

Google Scholar

[20] E.L. Kirkby, J.D. Rule, V.J. Michaud, N.R. Sottos, S.R. White and JA.E. Månson: Adv. Funct. Mater. Vol. 18 (2008), pp.2253-60

DOI: 10.1002/adfm.200701208

Google Scholar

[21] Y. Kuang and J. Ou: Smart Mater. Struct. Vol. 17 (2008), 025020

Google Scholar

[22] H. Li, ZQ. Liu and JP. Ou: Smart Mater. Struct. Vol. 16 (2007), pp.2550-9.

Google Scholar

[23] B. Xu, Y.Q. Fu , M. Ahmad , J.K. Luo, W.M. Huang, A. Kraft, R. Reuben, Y.T. Pei, Z.G. Chen and J.Th.M.De Hosson: J. Mater. Chem. Vol. 20 (2010), pp.3442-8

DOI: 10.1039/b923238a

Google Scholar

[24] G.H. Pan, W.M. Huang, Z.C. Ng, N. Liu and S.J. Phee: Smart Mater. Struct. Vol. 17 (2008), 045007

Google Scholar

[25] L. Sun, W.M. Huang and J.Y. Cheah: Smart Mater. Struct. Vol. 19 (2010), 055005

Google Scholar

[26] W. Huang: J. Intell. Mater. Syst. Struct. Vol. 10 (1999), pp.221-31

Google Scholar

[27] W. Huang and W. Toh: J. Mater. Sci. Lett. Vol. 19 (2000), pp.1549-50

Google Scholar

[28] W. Huang: J. Mater. Sci. Lett. Vol. 17 (1998), pp.1843-4

Google Scholar

[29] X.Y. Gao and W.M. Huang: Smart Mater. Struct. Vol. 11 (2002), pp.256-68

Google Scholar

[30] L. An and W.M. Huang: Mater. Sci. Eng. A-Struct. Vol. 420 (2006), pp.220-7

Google Scholar

[31] G.H. Pan and W.M. Huang: J. Mater. Sci. Vol. 41 (2006), pp.7964-8

Google Scholar