[1]
H. Funakubo, Ed, in: Shape Memory Alloys, volume 1 of Precision Machinery and Robotics, Gordon and Breach Science Publishers (1987)
Google Scholar
[2]
K. Otsuka and C.M. Wayman, Eds, in: Shape Memory Materials, Cambridge University Press (1998)
Google Scholar
[3]
W. Huang: Mater. Des. Vol. 23 (2002), pp.11-9
Google Scholar
[4]
S. Miyazaki, Y.Q. Fu and W.M. Huang, Eds, in: Thin Film Shape Memory Alloys: Fundamentals and Device Applications, Cambridge University Press (2009)
DOI: 10.1017/cbo9780511635366
Google Scholar
[5]
T.W. Duerig, K.N. Melton, D. Stöckel and C.M. Wayman, in: Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann (1990)
Google Scholar
[6]
I.P. Lipscomb and L.D.M. Nokes, in: The Application of Shape Memory Alloys in Medicine, Wiley (1996)
Google Scholar
[7]
Pelton A, Hodgson D, Russell S and Duerig T 1997 SMST-97: Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies (California: SMST)
DOI: 10.31399/asm.cp.smst2022fm03
Google Scholar
[8]
Baz A, Ro J, Mutua M and Gilheany J 1992 Active buckling control of Nitinol-reinforced composites beams, in ADPA/AIAA/ASME/SPIE Conference on active materials and adaptive structures-Session 10, Edited by: Knowles, G.J., 167-76
DOI: 10.1007/978-94-017-1903-2_4
Google Scholar
[9]
Beauchamp C H, Nadolink R H, Dickinson S C and Dean L M 1992, Shape memory alloy adjustable camber (SMAAC) control surface, Proceedings of SPIE 1777 189-92
DOI: 10.1117/12.2298061
Google Scholar
[10]
Files B and Olson GB 1997, Terminator 3: Biomimetic self-healing alloy composite, in SMST-97: Proceedings of the second international conference on shape memory and superelastic technologies (California: SMST) 281-6
DOI: 10.31399/asm.cp.smst2022fm03
Google Scholar
[11]
G. Song, N. Ma and H.N. Li: Eng. Struct. Vol. 28 (2006), pp.1266-74
Google Scholar
[12]
G. Zhou and P. Lloyd: Compos. Sci. Technol. Vol. 69 (2009), pp.2034-41
Google Scholar
[13]
Y. Freed and J. Aboudi: Smart Mater. Struct. Vol. 17 (2008), 015046
Google Scholar
[14]
M.S. Alam, M.A. Youssef and M. Nehdi: Can. J. Civ. Eng. Vol. 34 (2007), pp.1075-86
Google Scholar
[15]
L. Janke, C. Czaderski, M. Motavalli and J. Ruth: Mater. Struct. Vol. 38 (2005), pp.578-92
Google Scholar
[16]
B. Andrawes, M. Shin and N. Wierschem: J. Bridge Engrg. Vol. 15 (2010), pp.81-9
Google Scholar
[17]
K. Hamada, F. Kawano and K. Asaoka K: Dent. Mater. J. Vol. 22 (2003), pp.160-7
Google Scholar
[18]
D.S. Burton, X. Gao and L.C. Brinson: Mech. Mater. Vol. 38 (2006), pp.525-37
Google Scholar
[19]
K. Shahin, G.P. Zou and F. Taheri: Mech. Adv. Mater. Struct. Vol. 12 (2005), pp.425-35
Google Scholar
[20]
E.L. Kirkby, J.D. Rule, V.J. Michaud, N.R. Sottos, S.R. White and JA.E. Månson: Adv. Funct. Mater. Vol. 18 (2008), pp.2253-60
DOI: 10.1002/adfm.200701208
Google Scholar
[21]
Y. Kuang and J. Ou: Smart Mater. Struct. Vol. 17 (2008), 025020
Google Scholar
[22]
H. Li, ZQ. Liu and JP. Ou: Smart Mater. Struct. Vol. 16 (2007), pp.2550-9.
Google Scholar
[23]
B. Xu, Y.Q. Fu , M. Ahmad , J.K. Luo, W.M. Huang, A. Kraft, R. Reuben, Y.T. Pei, Z.G. Chen and J.Th.M.De Hosson: J. Mater. Chem. Vol. 20 (2010), pp.3442-8
DOI: 10.1039/b923238a
Google Scholar
[24]
G.H. Pan, W.M. Huang, Z.C. Ng, N. Liu and S.J. Phee: Smart Mater. Struct. Vol. 17 (2008), 045007
Google Scholar
[25]
L. Sun, W.M. Huang and J.Y. Cheah: Smart Mater. Struct. Vol. 19 (2010), 055005
Google Scholar
[26]
W. Huang: J. Intell. Mater. Syst. Struct. Vol. 10 (1999), pp.221-31
Google Scholar
[27]
W. Huang and W. Toh: J. Mater. Sci. Lett. Vol. 19 (2000), pp.1549-50
Google Scholar
[28]
W. Huang: J. Mater. Sci. Lett. Vol. 17 (1998), pp.1843-4
Google Scholar
[29]
X.Y. Gao and W.M. Huang: Smart Mater. Struct. Vol. 11 (2002), pp.256-68
Google Scholar
[30]
L. An and W.M. Huang: Mater. Sci. Eng. A-Struct. Vol. 420 (2006), pp.220-7
Google Scholar
[31]
G.H. Pan and W.M. Huang: J. Mater. Sci. Vol. 41 (2006), pp.7964-8
Google Scholar