Atomistic Study on the Structure and Thermodynamic Properties of Afe2al10 (A = Th, U)

Article Preview

Abstract:

An atomistic study is presented on the phase stability, interatomic distances and lattice parameters of the new actinide intermetallic compounds AFe2Al10 (A = Th, U). Calculations are based on a series of interatomic pair potentials related to the actinides and transition metals, which are obtained by lattice inversion method. The cohesive energy of AFe2Al10 with two possible structures of YbFe2Al10-type and ThMn12-type are calculated and compared with each other. Calculated lattice parameters of AFe2Al10 are found to agree with reports in the literatures. In particular, the phonon densities of states, vibrational entropy and Debye temperature related to dynamic phenomena are evaluated for the first time.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 261-263)

Pages:

735-739

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Stepien-Damm, A. Baran, W. Suski, J. Less-Common Met. 102 (1984) L5.

Google Scholar

[2] A. Baran, W. Suski, O.J. Zogal, J. Less-Common Met. 121 (1986) 175.

Google Scholar

[3] A.P. Goncalves, M. Almedia, C.T. Waker, J. Ray, J.C. Spirlet, Mater. Lett. 19 (1994) 13–16.

Google Scholar

[4] K. Recko, M. Biernacka, L. Dobrzynski, K. Perzynska, D. Satula, K. Szymanski, J. Waliszewski, W. Suski, K. Wochowski, G. Andre, F. Bouree, J. Phys.: Condens. Matter. 9 (1997) 9541.

DOI: 10.1088/0953-8984/9/44/010

Google Scholar

[5] J.V. Florio, R.E. Rundle, A.I. Snow, Acta Crystallogr. 5 (1952) 449.

Google Scholar

[6] W. Suski, In: Gschneidner Jr KA, Eyring L, editors. Handbook on the physics and chemistry of rare earths. Netherlands: Elsevier; 1996. p.143.

Google Scholar

[7] V.M.T. Thiede, T. Ebel, W. Jeitschko, J. Mater Chem. 8(1) (1998) 125.

Google Scholar

[8] S. Niemann, W. Jeitschko, Z Kristallogr. 210(5) (1995) 338.

Google Scholar

[9] L. Meshi, V. Ezersky, V.Y. Zenou, A. Munitz, M. Talianker, ISM 2001 Conf Proc, Haifa; May 2001. www.technion.ac.il/technion/materials/ ism/ism2001.html

Google Scholar

[10] L. Meshi, M. Talianker, A. Munitz, J. Alloys Compd. 370 (2004) 206-210.

Google Scholar

[11] L. Meshi, V. Ezersky, A. Venkert, M. Talianker, Intermetallics. 13 (2005) 792-795.

DOI: 10.1016/j.intermet.2004.12.027

Google Scholar

[12] H. Noel, A.P. Goncalves, J.C. Waerenborgh. Intermetallics.12 (2004) 189-194.

Google Scholar

[13] N.X. Chen, J. Shen and X.P. Su, J. Phys.: condens. Matter. 13 (2001) 2727-2736.

Google Scholar

[14] H. Chang, N.X, Chen, J.K. Liang, and G.H. Rao. J. Phys: Condens. Matter 14 (2002) 1.

Google Scholar

[15] P. Qian, N.X. Chen and J. Shen, Physics Letter A 335 (2005) 464-470.

Google Scholar

[16] P. Qian, N.X. Chen and J. Shen, Solid State Comm. 134 (2005) 771-776.

Google Scholar

[17] W.X. Li, L.Z. Cao, J. Shen, N.X. Chen, B.D. Liu, J.L. Wang, G.H. Wu, F.M. Yang, and Y.X. Li, J. Appl. Phys. 93 (2003) 6921.

Google Scholar

[18] P. Qian, Q.L. Wang, N.X. Chen and J. Shen, J. Phys. D: Appl. Phys. 39 (2006) 1197-1203.

Google Scholar

[19] N.X. Chen, G.B. Ren, Phys Rev B 45 (1992) 8177.

Google Scholar

[20] N.X. Chen, Z.D. Chen, Y.C. Wei, Phys. Rev. E 55 (1) (1997) R5.

Google Scholar