Frequency Pulse Period and Duty Factor Effects on Electrochemical Micromachining (EMM)

Abstract:

Article Preview

Electrochemical micromachining (EMM) appears to be promising as a future micro machining technique since in many areas of applications; it offers several advantages including electronic, biomedical and MEMS/NEMS applications. Present paper will highlight the influence of various EMM process parameters i.e. machining voltage, electrolyte concentration, frequency pulse period and duty factor on machining performance criteria e.g. material removal rate and machining accuracy to meet the micromachining requirements. Some of the experiments had been carried out on copper to investigate the most effective zone, which gives high machining accuracy with appreciable amount of material removal rate. Attempt has also been made to study and compare the surface condition of the machined micro-holes through SEM micrographs. From the analysis of test results and SEM micrographs it can be observed that optimum value of frequency pulse period is about 200 μsec and duty factor is about 20% which will produce accurate micro-holes with highest possible amount of material removal.

Info:

Periodical:

Advanced Materials Research (Volumes 264-265)

Edited by:

M.S.J. Hashmi, S. Mridha and S. Naher

Pages:

1334-1339

DOI:

10.4028/www.scientific.net/AMR.264-265.1334

Citation:

M. Malapati et al., "Frequency Pulse Period and Duty Factor Effects on Electrochemical Micromachining (EMM)", Advanced Materials Research, Vols. 264-265, pp. 1334-1339, 2011

Online since:

June 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.