Morphology and Mass Changes with Magnetic Field during the Electrodeposition of Ni-Co

Article Preview

Abstract:

The influence of a static magnetic field of 4.4 T on the electrodeposition process on copper plates immersed in a solution of Nickel and Cobalt ions is presented. The electrodeposited layers characterized by Scanning Electron Microscopy (SEM) including Energy Dispersive X-Ray (EDX), X-Ray Diffraction (XRD) and Atomic Force Microscopy (AFM).It was observed that the difference between the mass of electrodeposition with the application of a Permanent Parallel Magnetic Field to the electrode surface (PPMF) and the electrodeposited layers without the PPMF, increased with the increase of current density. The presence of the PPMF gave smoother electrodeposited surface compared to without the PPMF. The increase in current density gave fewer the cracks on the electrodeposited surface.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 264-265)

Pages:

1389-1394

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Z. Fahidy, The effect of magnetic fields on electrochemical processes. In Conway BE (ed) Modern aspects of electrochemistry, no 32, Kluwer/ plenum, New Yourk, pp.333-354.

DOI: 10.1007/0-306-46916-2_5

Google Scholar

[2] A. Chiba, K. Kitamura and T. Ogawa: Sur. Coat Tech. Vol. 27 (1986), p.83.

Google Scholar

[3] M. Waskass: Acta. Chem. Scan. Vol. 50 (1996), p.516.

Google Scholar

[4] R .A. Tacken and L. J. J. Janssen: J. Appl. Electrochem. Vol. 25 (1995), p.1.

Google Scholar

[5] J. O'M. Bockrise, A. K. N. Reddy, Modern Electrochemistry, Vol. 2, Plenum Press, N. Y, (1972).

Google Scholar

[6] M. Ebadi, W. J. Basirun and Y. Alias: Asi J. Chem. Vol. 21. 9 (2009), p.7354.

Google Scholar

[7] G. Hinds, J.M.D. Coey and M.E.G. Lyons: Electrochem. Comm. Vol. 3 (2001), p.215.

Google Scholar

[8] O. Lioubashevski, E. Katz, I. Willner, J. Phys. Chem. C. Vol. 111 (2007), p.6024.

Google Scholar

[9] O. Lioubashevski, E. Katz and I. Willner: J. Phys. Chem. C. Vol. 108 (2004), p.5778.

Google Scholar

[10] H. Matsushima, Y. Fukunaka, Y. Ito, A. Bund and W. Plieth: J. Electroanal. Chem. Vol. 587 (2006), p.93.

Google Scholar

[11] T. Z. Fahidy: Prog. Sur. Sci. Vol. 68 (2001), p.155.

Google Scholar

[12] O. Devos, O. Aaboubi, J-P. Chopart, A. Olivier: J. Phys. Chem. A. Vol. 104 (2000), p.1544.

Google Scholar

[13] R. Aogaki and R. Morimoto, M: J. Mag. Mag. Mat. Online; (2009).

Google Scholar

[14] A. Bund, S. Koehler, H. H. Kuehlein and W. Plieth, Electrochem. Acta. Vol. 49 (2003), p.147.

Google Scholar

[15] A. Ispas, H. Matsushima, W. Plieth and A. Bund: Electrochem. Acta. Vol. 52 (2007), p.2785.

Google Scholar

[16] N. Leventis, M. G. Chen, X. R. Gao, M. Canalas and P. Zhang: J. Phys. Chem. B, Vol. 102 (1998), p.3512.

Google Scholar

[17] R. Aogaki, K. Fueki, T. Mukaibo and Denki Kagaku., 43, (1975), p.504.

Google Scholar

[18] O. Aboubi, J. P. Chopart, J. Douglade, A. Oliver, C. Gabrielli and Tribollet B: J. Electrochem. Soc. Vol. 137 (1990), p.1796.

Google Scholar

[19] M. Ebadi, W. J. Basirun and Y. Alias, Asi. J. Chem. 21. 8, (2009), p.6343.

Google Scholar

[20] I. Tabakovic, S. Riemer, V. Vas'ko, V. Spozhnikov and M. Kief: J. Electrochem. Soc. Vol. 150 (2003), p. C635.

Google Scholar

[21] V. Ganesh, D. Vijayaraghavan and V. Lakshminarayanan: Appl. Sur. Sci. 240, (2005), p.286.

Google Scholar

[22] J. A. Koza, S. Muhlenhoff, M. Uhlemann and K. Eckert: Electrochem. Com., Vol. 11 (2009), p.425.

Google Scholar

[23] A. Ispas, H. Matsushima, A. Bund and B. Bozzini: J. Electroanal. Chem., Vol. 626 (2009), p.174.

Google Scholar

[24] J. A. Koza, M. Uhemann, C. Mickel, A. Gebert and L. Schultz: J. Mag. Mag. Mat. Vol. 321 (2009), p.2265.

Google Scholar

[25] H. Matsushima. T. Nohira, I. Mogi and Y. Ito: Sur. Coat. Tech. Vol. 179 (2004), p.245.

Google Scholar