Formation of TiN Dispersed Composite Layer on Steel Surfaces by Titanium Powder Preplacement and TIG Surface Melting Processes

Article Preview

Abstract:

The possibility of forming a TiN dispersed composite layer on steel was studied by preplacement of titanium powder on steel surface and melting under TIG (Tungsten inert gas) torch in a reactive environment. The surface melting of preplaced 1.8 mg/mm2 Ti powder was performed under TIG torch with energy inputs of 324,378 and 432 J/mm in a pure nitrogen environment. With these melting conditions, the powder layer along with a thin layer of the substrate melted and produced a melt pool of around 1mm thickness. The resolidified melt layer consisted of dispersion of TiN dendrites in ferrite matrix and thus a composite of TiN in ferrite is created on the steel surface. The concentration of dendrite population was found to be higher nearer the melt surface compared to the deeper depth. A maximum surface hardness of about 2000 Hv was developed at the surface when glazed with an energy input of 432 J/mm and the hardness decreased gradually away from the surface. The hardness development is directly related to the concentration of TiN dendrites.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 264-265)

Pages:

1415-1420

Citation:

Online since:

June 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.W. Stachowiaki, A.W. Batchelor: Engineering Tribology, 3rd Edition (Elsevier Butterworth-Heinemann, USA 2005).

Google Scholar

[2] K. Holmberg, A. Matthews: Coatings Tribology: Properties, Techniques and Applications in Surface Engineering (Elsevier, Netherlands 1994).

Google Scholar

[3] H. F Lampman, Metal Handbook, Properties and Selection: Irons, Steels and High-Performance Alloys, vol. 1, 10th ed. (ASM International, Material Park, OH, USA 1990).

DOI: 10.31399/asm.hb.v01.9781627081610

Google Scholar

[4] A. Krella, A. Czyzniewski: Wear Vol. 265 (2008), p.963.

Google Scholar

[5] J. Gerth, U. Wiklund, Wear Vol. 264 (2008), p.885.

Google Scholar

[6] I. Zukerman, A. Raveh, H. Kalman, J.E. Klemberg-Sapieha, L. Martinu, Wear Vol. 263 (2007), p.1249.

DOI: 10.1016/j.wear.2006.11.049

Google Scholar

[7] S. Thongtem, P. Jentrakul, T. Thongtem, J. Mater. Process. Technol Vol. 174 (2006), p.218.

Google Scholar

[8] D. Lopez, C. Sanchez, A. Toro, Wear Vol. 258 (2005), p.684.

Google Scholar

[9] S. Chatterjee, S. Shariff, J. D. Majumdar, A. R. Choudhury, Int. J. Adv. Manuf. Tech. Vol. 38 (2008), p.938.

Google Scholar

[10] H. C. Man, S. Zhang, F. T. Cheng, X. Guo, Surf. Coat. Tech. Vol. 200 (2006), p.4961.

Google Scholar

[11] B. Guo, J. Zhou, S. Zhang, H. Zhou, Y. Pu, J. Chen, Mat. Sci. Eng. A-Struct. Vol. 480 (2008), p.404.

Google Scholar

[12] Y. Pu, B. Guo, J. Zhou, S. Zhang, H. Zhou, J. Chen, Appl. Surf. Sci. Vol. 255(2008), p.2697.

Google Scholar

[13] T.I. Khan, D. Fowles, Surf. Eng., Vol. 13 (1997), p.257.

Google Scholar

[14] S. Mridha, J. Matter. Process. Technol. Vol. 168, (2005), p.471.

Google Scholar

[15] S. Mridha, H.S. Ong, L.S. Poh, J. Mater. Process. Technol. Vol. 113 (2001), p.516.

Google Scholar

[16] S. Mridha, B.S. Ng, Surf. Eng. Vol. 15 (1999), p.210.

Google Scholar

[17] H. B. Cary, Arc Welding Automation. first ed., (CRC Press, New York 1995).

Google Scholar

[18] S. Kou, Welding Metallurgy, second ed., (John Wiley and Sons, New York 2003).

Google Scholar

[19] C. Hu, S. Mridha, H.S. Ubhi, P. Holdway, A.W. Bowen, T.N. Baker, Eight world conference on Titanium, Birmingham, UK (1995).

Google Scholar

[20] J. Folkes, P. Henry, K. Lipscombe, W.M. Steen, D.R. F West, Titan. Sci. Tech. Vol. 2 (1985) p.987.

Google Scholar

[21] S. Mridha, T. N Baker, J. Mater. Process. Technol. Vol. 77 (1998), p.115.

Google Scholar

[22] S. Mridha, T.N. Baker, Mater. Sci. Eng. A., Vol. 142 (1991), p.115.

Google Scholar

[23] M.S. Selamat, T.N. Baker, L.M. Watson, J. Mater. Process. Technol. Vol. 113 (2001), p.509.

Google Scholar

[24] ASM Handbook, Alloy Phase Diagram, Vol. 3, (ASM International, Materials Park, Ohio 1997).

Google Scholar

[25] J. F. Lancaster: Metallurgy of Welding, 5th Edition, (Chapman & Hall, London 1993).

Google Scholar