Formation of Ti-Al-N Dispersed Layer on Steel Surface by TIG Melting in a Reactive Environment

Article Preview

Abstract:

In this study an attempt has been made to produce titanium-aluminium dispersed hard nitride layer on mild steel surfaces by preplacement of 50 % Ti and 50 % Al powder mixture and then melting with TIG torch under nitrogen environment. Parameter such as heat input of the torch was varied between 540, 608 and 675 J/mm and its effect on the resolidified melt pool was studied. Glazing under all energy inputs produced more than 1mm thick resolidified clad layer. The microstructural analysis revealed the clad layer with dispersion of dendrites of Ti-Al nitrides and Ti- Al intermetallic in ferrite matrix. The concentration of dendrites were found to be maximum near the surface and decreased at deeper depths.The maximum hardness of the modified surface layer was found to be 900 Hv compared to180 Hv of the mild steel substrate.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 264-265)

Pages:

1433-1438

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. D. Sproul and K. O. Legg: Advanced Surface Engineering (Technomic publishing co. USA 1995).

Google Scholar

[2] B. Podgornik, J. Vizintin, O. Wanstrand, M. Larsson, S. Hogmark, H. Ronkainen and K. Holmberg, Wear Vol. 249 (2001), p.254.

DOI: 10.1016/s0043-1648(01)00564-6

Google Scholar

[3] P.P. Psyllaki, A. Griniari and D.I. Pantelis: J. Matter. Process. Technol. Vol. 195 (2008), p.299.

Google Scholar

[4] S. Y. Yoon, K. O. Lee, S. S. Kang and K. H. Kim, J. Matter. Process. Technol. Vol. 130–131(2002), p.260.

Google Scholar

[5] W.D. Munz: J. Vac. Sci. Technol. A Vol. 4 (1986), p.2717.

Google Scholar

[6] M. Braic, V. Braic, M. Balaceanu, G. Pavellescu, A. Vladescu, I. Tudor, A. Popescu, Z. Borsos, C. Logofatu and C. C. Negrila: J Optoelectron Adv M. Vol. 7 (2005), p.671.

DOI: 10.1016/j.surfcoat.2008.02.005

Google Scholar

[7] J. Dutta Majumdar, B. Ramesh Chandra, A. K. Nath and I. Manna: J. Matter. Process. Technol., Vol. 203 (2008), p.505.

Google Scholar

[8] D. Lopez, C. Sanchez and A. Toro: Wear Vol. 258 (2005), p.684.

Google Scholar

[9] T. I. Khan, S. A. Rizvi and K. Matsuura: Wear Vol. 244 (2000), p.154.

Google Scholar

[10] Q. Song and L. Shen: Scrip. Mater. Vol. 36 (1997), p.531.

Google Scholar

[11] U. Koster and U. Schunemann in Rapidly solidified surface layers by laser melting, edited by H.H. Liebermann in Rapidly solidified alloys, Marcel Dekker, New York, (1993).

DOI: 10.1201/9781482233995-14

Google Scholar

[12] S. Mridha, H.S. Ong and L.S. Poh: J. Matter. Process. Technol. Vol. 113 (2001), p.516.

Google Scholar

[13] S. Mridha and B.S. Ng: Surf. Eng. Vol. 15 (1999), p.210.

Google Scholar

[14] K.E. Easterling: Introduction to physical Metallurgy of Welding (Butterworth-Heinemann, London 1992).

Google Scholar

[15] S. Mridha: J. Matter. Process. Technol. Vol. 168 (2005), p.471.

Google Scholar

[16] H.B. Cary: Arc Welding Automation. 1st ed. (CRC Press, New York 1995).

Google Scholar

[17] J. F Lancaster, Metallurgy of Welding 5th ed. (Chapman & Hall, London 1993).

Google Scholar

[18] S. Kou: Welding Metallurgy, second ed. (John Wiley and Sons, New York 2003).

Google Scholar

[19] S. Mridha and T. N Baker: J. Matter. Process. Technol. Vol. 77 (1998), p.115.

Google Scholar