Wear Behavior of Modified Surface Layer Produced by TIG Melting of Preplaced Ti Powder in Nitrogen Environment

Article Preview

Abstract:

The formation of hard surface layer on steel provides a protective coating against wear, thermal loads and corrosion. In the present work a hard composite layer is formed on steel surfaces by preplacement of titanium powder and melted under nitrogen environment. Surface melting was conducted using TIG torch with different energy inputs. The microstructure and the morphology of the melt tracks were investigated using SEM and X-ray diffraction. The in-situ melting of titanium powder in nitrogen atmosphere produced dendritic microstructure of titanium nitride. The melt layer contained dispersed TiN, Ti2N dendrites highly populated at the surface compared to the deeper melt and gave a maximum surface hardness of around 1927 Hv. The wear property of the melt track was investigated using pin-on-disk tribometer at room temperature. The modified surface layer gave a low friction value of 0.12 and wear rate of 0.007895 ×10-4 compared to 1.648 × 10-4 mm3/N/m for the uncoated steel surface.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 264-265)

Pages:

1427-1432

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. F. Lampman: Metal Handbook, Properties and Selection: Irons, Steels and High-Performance Alloys (ASM International, Material Park, OH, USA 1990).

DOI: 10.31399/asm.hb.v01.9781627081610

Google Scholar

[2] K. Holmberg, A. Matthews: Coatings Tribology, Properties, Techniques and Applications in Surface Engineering (Elsevier, Netherlands 1994).

Google Scholar

[3] I. Zukerman, A. Raveh, H. Kalman, J.E.K. Sapieha and L. Martinu: Wear Vol. 263 (2007), p.1249.

DOI: 10.1016/j.wear.2006.11.049

Google Scholar

[4] X.H. Zheng, J.P. Tu, B. Gu, S.B. Hu: Wear Vol. 265 (2008), p.261.

Google Scholar

[5] S. Mridha: J. Mater. Process. Technol. Vol. 168 (2005), p.471.

Google Scholar

[6] J. D. Ayers, R. T. Schaefer and W. P. Robey: J. Metals Vol. 33 (1981), p.19.

Google Scholar

[7] S. Mridha, H. S. Ubhi, P. Holdway, T. N. Baker, A. W. Bowen: Proc. of the Titanium"92, TMS, Warrendale, Pennsylvania, The Minerals, Metals and Materials Society, U.S.A. (1993), p.2641.

Google Scholar

[8] G. R. Desale, C. P. Paul , B. K. Gandhi and S. C. Jain: Wear Vol. 266 (2009), p.975.

Google Scholar

[9] R. Kaul, P. Ganesh,R. Nandedkar and A. Nath: J. Mater. Process. Technol. Vol. 116 (2005), p.83.

Google Scholar

[10] J.D. Majumdar B.R. Chandra, and I. Manna: J. Mater. Process. Technol. Vol. 203 (2008), p.505.

Google Scholar

[11] S. Mridha H.S. Ong, L.S. Poh, and P. Cheang: J. Mater. Process. Technol. Vol. 113 (2001), p.516.

Google Scholar

[12] K. E. Easterling: Introduction to physical Metallurgy of Welding (Butterworth-Heinemann, London 1992).

Google Scholar

[13] C. Hu, S. Mridha, H.S. Ubhi, P. Holdway, A.W. Bowen, T.N. Baker: Proc. Eight world conference on Titanium, Birmingham, UK, (1995).

Google Scholar

[14] S. Mridha, T. N. Baker: Mater. Sci. Eng. A. Vol. 142 (1991), p.115.

Google Scholar

[15] M.S. Selamat, T.N. Baker, L.M. Watson: J. Mater. Process. Technol. Vol. 113 (2001), p.509.

Google Scholar

[16] J. F Lancaster: Metallurgy of Welding, 5th Edition (Chapman & Hall, London 1993).

Google Scholar

[17] S. Kou: Welding Metallurgy, second ed. (John Wiley and Sons, New York 2003).

Google Scholar

[18] E. Santner, D. Klaffke and G. M. Kijcker: Wear Vol. 190 (1995), p.204.

Google Scholar

[19] Y.S. Tian, C.Z. Chen Q.H. Huo and T.Q. Lei: Appl. Surf. Sci. Vol. 250 (2005), p.223.

Google Scholar

[20] M.H. Staia, Y.P. Delgado, C. Sanchez, A. Castro, E. Bourhis, E.S.P. Cabrera: Wear Vol. 267 (2009), p.1452.

Google Scholar

[21] K. Kato: Wear Vol. 241 (2000), p.151.

Google Scholar