[1]
V.V. Sobolev, J.M. Guilemany, J.R. Miguel, J.A. Calero, Influence of thermal processes on coating formation during high velocity oxy-fuel (HVOF) spraying of WC-Ni powder particles, Surface and Coatings Technology 82 (1996) 121-129.
DOI: 10.1016/0257-8972(95)02657-6
Google Scholar
[2]
L. Zhao, M. Maurer, F. Fischer, R. Dicks, E. Lugscheider, Influence of spray parameters on the particle in-flight properties and the properties of HVOF coating of WC-CoCr, Wear 257 (2004) 41-46.
DOI: 10.1016/j.wear.2003.07.002
Google Scholar
[3]
Y. Qiao, T.E. Fischer, A. Dent, The effects of fuel chemistry and feedstock powder structure on the mechanical and tribological properties of HVOF thermal-sprayed WC-Co coatings with very fine structures, Surface and Coatings Technology 172 (2003).
DOI: 10.1016/s0257-8972(03)00242-1
Google Scholar
[4]
Y.Y. Wang, C.J. Li, A. Ohmori, Examination of factors influencing the bond strength of high velocity oxy-fuel sprayed coatings, Surface and Coatings Technology 200 (2006) 2923-2928.
DOI: 10.1016/j.surfcoat.2004.11.040
Google Scholar
[5]
I. Fagoaga, J.L. Vivienta, P. Gavin, J.M. Bronte, J. Garcia, J.A. Tagle, Multilayer coatings by continuous detonation system spray technique, Thin Solid Films 317 (1998) 259-265.
DOI: 10.1016/s0040-6090(97)00524-5
Google Scholar
[6]
C. David, K. Anthymidis, P. Agrianidis, D. Tsipas, Determination of the fatigue resistance of HVOF thermal spray WC-CoCr coatings by means of impact testing, Journal of Testing and Evaluation 35 (2007) 630-633.
DOI: 10.1520/jte100922
Google Scholar
[7]
J. Wilden, M. Wank, H.D. Steffens, M. Brune, New thermal barrier coating system for high temperature applications, Proceedings of the 15th International Thermal Spray Conference (May 25-29, 1998) 2 (1998) 1669-1673.
DOI: 10.31399/asm.cp.itsc1998p1669
Google Scholar
[8]
J. Wang, K. Li, X. He, B. Sun, Q. Guo, M. Nishio, H. Ogawa, Effects of structure and processing technique on the properties of thermal spray WC-Co and NiCrAl/WC-Co coatings, Materials Science and Engineering A 371 (2004) 187-192.
DOI: 10.1016/j.msea.2003.11.045
Google Scholar
[9]
G. Pepe, L. Looney, M.S.J. Hashmi, Predicting the wear resistance of WC-Co coatings using neural networks, Int. Journal of Modelling and Simulation 19 (1999) 410-417.
DOI: 10.1080/02286203.1999.11760272
Google Scholar
[10]
W.C. Oliver and G.M. Pharr, Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments J of Materials Research, 7 (1992) 1564-1580.
DOI: 10.1557/jmr.1992.1564
Google Scholar
[11]
K. Niihara, R. Morena, D.P.H. Hasselman, Indentation fracture toughness of brittle materials for palmqvist cracks, Fracture Mechanics of Ceramics, 5 (1983) 97-105.
DOI: 10.1007/978-1-4613-3488-0_7
Google Scholar
[12]
D. Al-Anazi, M.S.J. Hashmi and B.S. Yilbas, HVOF thermally sprayed CoNiCrAlY coatings on Ti-6Al-4V alloy: high cycle fatigue properties of coating, Proc. Inst. Mech. Engrs., Part B, Journal of Engineering Manufacture, 221(2007) 647-654.
DOI: 10.1243/09544054jem772
Google Scholar
[13]
D. Al-Anazi, M.S.J. Hashmi and B.S. Yilbas, HVOF coating of AMDRY 9954 onto Ti-6Al-4V alloy: fracture toughness measurement, Proc. Inst. Mech. Engrs., Part B, Journal of Engineering Manufacture, 221(2007) 617-623.
DOI: 10.1243/09544054jem715
Google Scholar