Fatigue Behavior and Damage Mechanism of a Cast Aluminum Alloy in Very High Cycle Regime

Abstract:

Article Preview

An improved understanding of fatigue behavior of a cast aluminum alloy (2-AS5U3G-Y35) in very high cycle regime was developed through ultrasonic fatigue test in axial and torsion loading, cyclic loading in axial and torsion at 35 Hz and 20kHz with R=-1 was used respectively to demonstrate the effect of loading condition. S-N curves obtained show that fatigue failure occurred in range of 105 -1010 cycles in axial or torsion loading, the asymptote of S-N curve is inclined gently, but no fatigue limit under torsion and axial loading condition. Fatigue fracture surface shows fatigue crack essentially initiated from the surface of the specimens subjected to cyclic torsion load, it is different from the fatigue fracture characteristic in axial loading which fatigue crack initiate from subsurface defect in very high cycle regime. Fatigue initiation is on the maximum shear plane, the overall crack orientation is observed on a typical spiral 45° to the fracture plane, which is the maximum principle stress plane, however, shear strip are very clear in the torsion fatigue fracture surface, the torsion fracture is actually in shear fracture.

Info:

Periodical:

Advanced Materials Research (Volumes 264-265)

Edited by:

M.S.J. Hashmi, S. Mridha and S. Naher

Pages:

706-711

DOI:

10.4028/www.scientific.net/AMR.264-265.706

Citation:

H. Q. Xue et al., "Fatigue Behavior and Damage Mechanism of a Cast Aluminum Alloy in Very High Cycle Regime", Advanced Materials Research, Vols. 264-265, pp. 706-711, 2011

Online since:

June 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.