[1]
H. Stadtler and C. Kilger: Supply Chain Management and Advanced Planning, Springer-Verlag, Berlin, Germany, (2002).
Google Scholar
[2]
C. C. Poirier: Supply Chain Optimization: Building a Total Business Network, Berrett-Kochler Publishers, San Francisco, California, (1996).
Google Scholar
[3]
C. C. Poirier: Advanced Supply Chain Management: How to Build a Sustained Competitive Advantage, Berrett-Kochler Publishers, San Francisco, California, (1999).
Google Scholar
[4]
A. Nagurney, J. Dong, and D. Zhang: A Supply Chain Network Equilibrium Model, Transportation Research E, 38(2002), pp.281-303.
DOI: 10.1016/s1366-5545(01)00020-5
Google Scholar
[5]
J. Dong, D. Zhang, A. Nagurney: A Supply Chain Network Equilibrium Model with Random Demands, European Journal of Operational Research, 156(2004), pp.194-212.
DOI: 10.1016/s0377-2217(03)00023-7
Google Scholar
[6]
A. Nagurney, J. Cruz, J. Dong and D. Zhang: Supply Chain Networks, Electronic Commerce, and Supply Side and Demand Side Risk, European Journal of Operational Research, 164(2005), pp.120-142.
DOI: 10.1016/j.ejor.2003.11.007
Google Scholar
[7]
B.S. He: A class of projetion and contraction method for monotone varitional inequalities, Appl. Math. Optim., 35( 1997), pp.69-76.
Google Scholar
[8]
M.V. Solodov and B.F. Svaiter: A new projection method for varitional inequality problems, SIAM J. Control Optim., 37(1999), pp.765-776.
DOI: 10.1137/s0363012997317475
Google Scholar
[9]
Y.J. Wang, N.H. Xiu and C.Y. Wang: A new version of extragradient method for varitional inequality problems, Comput. Math. Appl., 42(2001), pp.969-979.
DOI: 10.1016/s0898-1221(01)00213-9
Google Scholar
[10]
Y.J. Wang, N.H. Xiu and C.Y. Wang: Unified framework of extragradient-type methods for pseudomonotone varitional inequalities, J. Optim. Theroy Appl., 111(2001), pp.641-656.
DOI: 10.1023/a:1012606212823
Google Scholar
[11]
Y.J. Wang, N.H. Xiu and J.Z. Zhang: Modified extragradient methods for varitional inequalities and verification of solution existence, J. Optim. Theroy Appl., 119(2003), pp.167-183.
Google Scholar
[12]
Y.J. Wang, A new projection and contraction method for varitional inequalities, Pure Math. and Appl., 13(4)(2002), pp.483-493.
Google Scholar
[13]
J.S. Pang: Error bounds in mathematical programming, Math. Programming, 79(1997), pp.299-332.
DOI: 10.1007/bf02614322
Google Scholar
[14]
J.S. Pang: A posterriori error bound for the linearly-constrained variational inequality problem, Math. of Operations Research, 12(1987), pp.474-483.
DOI: 10.1287/moor.12.3.474
Google Scholar
[15]
M.V. Solodov: Convergence rate analysis of iteractive algorithms for solving variational inequality problems, Math. Programming, Ser. A 96(2003), pp.513-528.
DOI: 10.1007/s10107-002-0369-z
Google Scholar
[16]
E.H. Zarantonello: Projections on Convex Sets in Hilbert Space and Spectral Theory, Contributions to Nonlinear Functional Analysis, New York: Academic Press, (1971).
DOI: 10.1016/b978-0-12-775850-3.50013-3
Google Scholar
[17]
D. Kinderlehrer and G Stampacchia: An introduction to variational inequalities and their applications, New York: Academic Press, (1980).
Google Scholar