A New Type of Algorithm for the Variational Inequalities on Supply Chain Economic Equilibrium Model

Article Preview

Abstract:

In this paper, we consider an algorithm for variational inequality(VI) problem on the supply chain network equilibrium model, which is established by Dong et al.. To this end, we first develop a global error bound for VI, which can be taken as an extension of the existing global error bound for VI, then present the convergence analysis of the method for solving the variational inequalities, and the convergence rate are also given under same conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

344-349

Citation:

Online since:

June 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Stadtler and C. Kilger: Supply Chain Management and Advanced Planning, Springer-Verlag, Berlin, Germany, (2002).

Google Scholar

[2] C. C. Poirier: Supply Chain Optimization: Building a Total Business Network, Berrett-Kochler Publishers, San Francisco, California, (1996).

Google Scholar

[3] C. C. Poirier: Advanced Supply Chain Management: How to Build a Sustained Competitive Advantage, Berrett-Kochler Publishers, San Francisco, California, (1999).

Google Scholar

[4] A. Nagurney, J. Dong, and D. Zhang: A Supply Chain Network Equilibrium Model, Transportation Research E, 38(2002), pp.281-303.

DOI: 10.1016/s1366-5545(01)00020-5

Google Scholar

[5] J. Dong, D. Zhang, A. Nagurney: A Supply Chain Network Equilibrium Model with Random Demands, European Journal of Operational Research, 156(2004), pp.194-212.

DOI: 10.1016/s0377-2217(03)00023-7

Google Scholar

[6] A. Nagurney, J. Cruz, J. Dong and D. Zhang: Supply Chain Networks, Electronic Commerce, and Supply Side and Demand Side Risk, European Journal of Operational Research, 164(2005), pp.120-142.

DOI: 10.1016/j.ejor.2003.11.007

Google Scholar

[7] B.S. He: A class of projetion and contraction method for monotone varitional inequalities, Appl. Math. Optim., 35( 1997), pp.69-76.

Google Scholar

[8] M.V. Solodov and B.F. Svaiter: A new projection method for varitional inequality problems, SIAM J. Control Optim., 37(1999), pp.765-776.

DOI: 10.1137/s0363012997317475

Google Scholar

[9] Y.J. Wang, N.H. Xiu and C.Y. Wang: A new version of extragradient method for varitional inequality problems, Comput. Math. Appl., 42(2001), pp.969-979.

DOI: 10.1016/s0898-1221(01)00213-9

Google Scholar

[10] Y.J. Wang, N.H. Xiu and C.Y. Wang: Unified framework of extragradient-type methods for pseudomonotone varitional inequalities, J. Optim. Theroy Appl., 111(2001), pp.641-656.

DOI: 10.1023/a:1012606212823

Google Scholar

[11] Y.J. Wang, N.H. Xiu and J.Z. Zhang: Modified extragradient methods for varitional inequalities and verification of solution existence, J. Optim. Theroy Appl., 119(2003), pp.167-183.

Google Scholar

[12] Y.J. Wang, A new projection and contraction method for varitional inequalities, Pure Math. and Appl., 13(4)(2002), pp.483-493.

Google Scholar

[13] J.S. Pang: Error bounds in mathematical programming, Math. Programming, 79(1997), pp.299-332.

DOI: 10.1007/bf02614322

Google Scholar

[14] J.S. Pang: A posterriori error bound for the linearly-constrained variational inequality problem, Math. of Operations Research, 12(1987), pp.474-483.

DOI: 10.1287/moor.12.3.474

Google Scholar

[15] M.V. Solodov: Convergence rate analysis of iteractive algorithms for solving variational inequality problems, Math. Programming, Ser. A 96(2003), pp.513-528.

DOI: 10.1007/s10107-002-0369-z

Google Scholar

[16] E.H. Zarantonello: Projections on Convex Sets in Hilbert Space and Spectral Theory, Contributions to Nonlinear Functional Analysis, New York: Academic Press, (1971).

DOI: 10.1016/b978-0-12-775850-3.50013-3

Google Scholar

[17] D. Kinderlehrer and G Stampacchia: An introduction to variational inequalities and their applications, New York: Academic Press, (1980).

Google Scholar