[1]
M.C. Ferris and J.S. Pang: Engineering and economic applications of complementarity problems. Society for industrial and applied mathematics, 39(4) (1997), pp.669-713.
Google Scholar
[2]
L. Walras: Elements of Pure Economics,. Allen and Unwin, London, (1954).
Google Scholar
[3]
A. Nagurney, J. Dong, D. Zhang: A supply chain network equilibrium model. Transportation Research. Part E 38(2002), p.281.
DOI: 10.1016/s1366-5545(01)00020-5
Google Scholar
[4]
L.P. Zhang: A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial and Managment Optimization. 3(4) (2007), pp.727-737.
Google Scholar
[5]
F. Facchinei and J.S. Pang: Finite-Dimensional Variational Inequality and Complementarity Problems, Springer, New York, (2003).
Google Scholar
[6]
J.S. Pang: Error bounds in mathematical programming. Math. Programming. 79(1997), pp.299-332.
DOI: 10.1007/bf02614322
Google Scholar
[7]
M.V. Solodov: Convergence rate analysis of iteractive algorithms for solving variational inequality problems. Math. Programming. Ser. A 96(2003), pp.513-528.
DOI: 10.1007/s10107-002-0369-z
Google Scholar
[8]
Z.Q. Luo, Mangasarian O.L., Ren J. and Solodov M.V.: New error bound for the linear complementarity problem. Mathematics of Operations Research. 19(1994), pp.880-892.
DOI: 10.1287/moor.19.4.880
Google Scholar
[9]
O.L. Mangasarian and J. Ren: New improved error bound for the linear complementtarity problem. Math. Programming. 66(1994), pp.241-255.
DOI: 10.1007/bf01581148
Google Scholar
[10]
Mangasarian O.L. and Shiau T.H.: Error bounds for monotone linear complementarity problems. Math. Programming. 36(1) (1986), pp.81-89.
DOI: 10.1007/bf02591991
Google Scholar
[11]
O.L. Mangasarian: Error bounds for nondegenerate monotone linear complementarity problems. Math. Programming. 48(1990), pp.437-445.
DOI: 10.1007/bf01582267
Google Scholar
[12]
R. Mathias and J.S. Pang: Error bound for the linear complementarity problem with a P-matrix. linear Algebra and Applications. 132(1990), pp.123-136.
DOI: 10.1016/0024-3795(90)90058-k
Google Scholar
[13]
B. Chen, Error Bounds for -Type and Monotone Nonlinear Complementarity Problems, J. Optim. Theory Appl., 108(2) (2001), pp.297-316.
DOI: 10.1023/a:1026434200384
Google Scholar
[14]
N.H. Xiu, J.Z. Zhang, Global Projection-Type Error Bound for General Variational Inequalities, J. Optim. Theory Appl., 112(1) (2002), pp.213-228.
DOI: 10.1023/a:1013056931761
Google Scholar
[15]
H.C. Sun, Y.J. Wang, L.Q. Qi: Global Error Bound for the Generalized Linear Complementarity Problem over a Polyhedral Cone. J. Optim. Theory Appl. 142(2009), p.417—429.
DOI: 10.1007/s10957-009-9509-4
Google Scholar
[16]
A.J. Hoffman, on the approximate solutions of linear inequalities, J. Res. National Bureau of Standards, 49 (1952), pp.263-265.
DOI: 10.6028/jres.049.027
Google Scholar
[17]
Z. Q. Luo, J. F. Sturm, Error bound for quadratic systems, http: /citeseerx. ist. psu. edu/viewdoc/summary?doi=10. 1. 1. 56. 3474.
Google Scholar
[18]
Y.J. Wang, N.H. Xiu, Theory and algorithms for nonlinear programming, Shanxi science and technology press, (2004) pp.170-171 (In Chinese).
Google Scholar