Error Estimation for a Economic Equilibrium Modeling

Article Preview

Abstract:

In this paper, the global error estimation for the generalized linear complementarity problem in economic equilibrium modeling(GLCP) is established. The result obtained in this paper can be viewed as extensions of previously known results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

350-355

Citation:

Online since:

June 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.C. Ferris and J.S. Pang: Engineering and economic applications of complementarity problems. Society for industrial and applied mathematics, 39(4) (1997), pp.669-713.

Google Scholar

[2] L. Walras: Elements of Pure Economics,. Allen and Unwin, London, (1954).

Google Scholar

[3] A. Nagurney, J. Dong, D. Zhang: A supply chain network equilibrium model. Transportation Research. Part E 38(2002), p.281.

DOI: 10.1016/s1366-5545(01)00020-5

Google Scholar

[4] L.P. Zhang: A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial and Managment Optimization. 3(4) (2007), pp.727-737.

Google Scholar

[5] F. Facchinei and J.S. Pang: Finite-Dimensional Variational Inequality and Complementarity Problems, Springer, New York, (2003).

Google Scholar

[6] J.S. Pang: Error bounds in mathematical programming. Math. Programming. 79(1997), pp.299-332.

DOI: 10.1007/bf02614322

Google Scholar

[7] M.V. Solodov: Convergence rate analysis of iteractive algorithms for solving variational inequality problems. Math. Programming. Ser. A 96(2003), pp.513-528.

DOI: 10.1007/s10107-002-0369-z

Google Scholar

[8] Z.Q. Luo, Mangasarian O.L., Ren J. and Solodov M.V.: New error bound for the linear complementarity problem. Mathematics of Operations Research. 19(1994), pp.880-892.

DOI: 10.1287/moor.19.4.880

Google Scholar

[9] O.L. Mangasarian and J. Ren: New improved error bound for the linear complementtarity problem. Math. Programming. 66(1994), pp.241-255.

DOI: 10.1007/bf01581148

Google Scholar

[10] Mangasarian O.L. and Shiau T.H.: Error bounds for monotone linear complementarity problems. Math. Programming. 36(1) (1986), pp.81-89.

DOI: 10.1007/bf02591991

Google Scholar

[11] O.L. Mangasarian: Error bounds for nondegenerate monotone linear complementarity problems. Math. Programming. 48(1990), pp.437-445.

DOI: 10.1007/bf01582267

Google Scholar

[12] R. Mathias and J.S. Pang: Error bound for the linear complementarity problem with a P-matrix. linear Algebra and Applications. 132(1990), pp.123-136.

DOI: 10.1016/0024-3795(90)90058-k

Google Scholar

[13] B. Chen, Error Bounds for -Type and Monotone Nonlinear Complementarity Problems, J. Optim. Theory Appl., 108(2) (2001), pp.297-316.

DOI: 10.1023/a:1026434200384

Google Scholar

[14] N.H. Xiu, J.Z. Zhang, Global Projection-Type Error Bound for General Variational Inequalities, J. Optim. Theory Appl., 112(1) (2002), pp.213-228.

DOI: 10.1023/a:1013056931761

Google Scholar

[15] H.C. Sun, Y.J. Wang, L.Q. Qi: Global Error Bound for the Generalized Linear Complementarity Problem over a Polyhedral Cone. J. Optim. Theory Appl. 142(2009), p.417—429.

DOI: 10.1007/s10957-009-9509-4

Google Scholar

[16] A.J. Hoffman, on the approximate solutions of linear inequalities, J. Res. National Bureau of Standards, 49 (1952), pp.263-265.

DOI: 10.6028/jres.049.027

Google Scholar

[17] Z. Q. Luo, J. F. Sturm, Error bound for quadratic systems, http: /citeseerx. ist. psu. edu/viewdoc/summary?doi=10. 1. 1. 56. 3474.

Google Scholar

[18] Y.J. Wang, N.H. Xiu, Theory and algorithms for nonlinear programming, Shanxi science and technology press, (2004) pp.170-171 (In Chinese).

Google Scholar