Error Estimates of H1-Galerkin Mixed Finite Element Methods for Nonlinear Parabolic Problem

Article Preview

Abstract:

In this paper, H1-Galerkin mixed element method is proposed to simulate the nonlinear Parabolic problem. The problem is considered in one dimensional space. and optimal error estimates are also established. In particular, our methods can simultaneously approximate the scalar unknown and the vector flux effectively, without requiring the LBB consistency condition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

504-509

Citation:

Online since:

June 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Douglas, J, Jr., Dupont, T. F., Wheeler, H1-Galerkin methods for the Laplace and heat equations. Mathematical aspect of finite elements in partialdifferential equation, New York: Academic Press, (1975), 383-415.

DOI: 10.1016/b978-0-12-208350-1.50017-0

Google Scholar

[2] A. K. Pani and P. C. Das, An H1-Galerkin method for quasilinear parabolic differential equations , in: C.A. Micchelli, D.V. Pai, B. V. Limaya (Eds. ), Methods of Functional Analysis in Approximation Theory ISNM 76, Berkhauser-Verlag, Basel, 357-370, (1986).

Google Scholar

[3] Pani A K. An H1- Galerkin mixed finite element method for parabolic difference equations, SIAM J. Nmer. Anal., 35(1998): 712-727.

DOI: 10.1137/s0036142995280808

Google Scholar

[4] B. Fraeijs de Veubeke, Displacement and equilibrium models in the finite element method. Stress Analysis, edited by 0. C. Zienkiewics and G. S. Holister ( Eds. ), Stress Analysis [C], JohnWiley and Sons Ltd., London., 145-197, (1965).

DOI: 10.1002/nme.339

Google Scholar

[5] K. Hellan, An analysis of elastic plates in flexure by a simplified finite element method, Acta Polytech. Scand. Ci. Ser., v. 46, (1967).

Google Scholar

[6] L. Herrmann, Finite element bending analysis for plates', J. Engng Mech. Diu., ASCE, 93(1967), 13-26.

Google Scholar

[7] J. Douglas, R. Ewing and M. Wheeler, A time-discretization procedure for a a mixed finite element approximation of miscible displacement in porous media, ROIRO Anal, number., 17(1983): 249-265.

DOI: 10.1051/m2an/1983170302491

Google Scholar

[8] J. Douglas, R. Ewing, and M. Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement, ROIRO Anal, number., 17(1983): 17-33.

DOI: 10.1051/m2an/1983170100171

Google Scholar

[9] M.F. Wheeler, The priori error estimate for Galerkin approximations to parabolic differential equations, SIAM J Numer Anal ., 10(1973), 723-749.

DOI: 10.1137/0710062

Google Scholar