[1]
Douglas, J, Jr., Dupont, T. F., Wheeler, H1-Galerkin methods for the Laplace and heat equations. Mathematical aspect of finite elements in partialdifferential equation, New York: Academic Press, (1975), 383-415.
DOI: 10.1016/b978-0-12-208350-1.50017-0
Google Scholar
[2]
A. K. Pani and P. C. Das, An H1-Galerkin method for quasilinear parabolic differential equations , in: C.A. Micchelli, D.V. Pai, B. V. Limaya (Eds. ), Methods of Functional Analysis in Approximation Theory ISNM 76, Berkhauser-Verlag, Basel, 357-370, (1986).
Google Scholar
[3]
Pani A K. An H1- Galerkin mixed finite element method for parabolic difference equations, SIAM J. Nmer. Anal., 35(1998): 712-727.
DOI: 10.1137/s0036142995280808
Google Scholar
[4]
B. Fraeijs de Veubeke, Displacement and equilibrium models in the finite element method. Stress Analysis, edited by 0. C. Zienkiewics and G. S. Holister ( Eds. ), Stress Analysis [C], JohnWiley and Sons Ltd., London., 145-197, (1965).
DOI: 10.1002/nme.339
Google Scholar
[5]
K. Hellan, An analysis of elastic plates in flexure by a simplified finite element method, Acta Polytech. Scand. Ci. Ser., v. 46, (1967).
Google Scholar
[6]
L. Herrmann, Finite element bending analysis for plates', J. Engng Mech. Diu., ASCE, 93(1967), 13-26.
Google Scholar
[7]
J. Douglas, R. Ewing and M. Wheeler, A time-discretization procedure for a a mixed finite element approximation of miscible displacement in porous media, ROIRO Anal, number., 17(1983): 249-265.
DOI: 10.1051/m2an/1983170302491
Google Scholar
[8]
J. Douglas, R. Ewing, and M. Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement, ROIRO Anal, number., 17(1983): 17-33.
DOI: 10.1051/m2an/1983170100171
Google Scholar
[9]
M.F. Wheeler, The priori error estimate for Galerkin approximations to parabolic differential equations, SIAM J Numer Anal ., 10(1973), 723-749.
DOI: 10.1137/0710062
Google Scholar