Phase Composition, Microstructure and Thermal Diffusivity of Cu/Si Composites Sintering Temperature Dependence

Article Preview

Abstract:

Cu/Si composites may become novel high-performance electronic packaging materials owing to combining the advantages of copper and silicon components. Here, we prepared Cu/Si composites by being sintered below and above eutectic temperature 802 °C, respectively, and found that sintering temperature notably affects their composition, microstructure and thermal diffusivity. The composites sintered at 780 °C are composed of copper and silicon, exhibiting dispersed silicon particles and continuous copper matrix, but those sintered at 820 °C primarily contain Cu3Si compounds, and a porous microstructure is observed. The thermal diffusivity of the former is over 21 times higher than that of the latter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

200-203

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Yih and D.D.L. Chung: J. Mater. Sci. Vol. 32 (1997), p.2873.

Google Scholar

[2] S.F. Moustafa, Z. Abdel-Hamid and A.M. Abd-Elhay: Mater. Lett. Vol. 53 (2002), p.244.

Google Scholar

[3] G. Sundberg, P. Paul, C.M. Sung and T. Vasilos: J. Mater. Sci. Vol. 41 (2006), p.485.

Google Scholar

[4] Th. Schubert, A. Brendel, K. Schmid, Th. Koeck, Ł. Ciupiński, W. Zieliński, T. Weißgärber and B. Kieback: Compos. Part A Vol. 38 (2007), p.2398.

DOI: 10.1016/j.compositesa.2007.08.012

Google Scholar

[5] H.W. Xing, X.M. Cao, W.P. Hu, L.Z. Zhao and J.S. Zhang: Mater. Lett. Vol. 59 (2005), p.1563.

Google Scholar

[6] L. Zhang, X.H. Qu, B.H. Duan, X.B. He, S.B. Ren and M.L. Qin: Compos. Sci. Technol. Vol. 68 (2008), p.2731.

Google Scholar

[7] L. Liu, Y.P. Tang, H.J. Zhao, J.H. Zhu and W.B. Hu: J. Mater. Sci. Vol. 43 (2008) p.974.

Google Scholar

[8] K. Hinode, K. Takeda and S. Kondo: J. Vac. Sci. Technol. A Vol. 20 (2002), p.1653.

Google Scholar

[9] T.B. Massalski: Binary Alloy Phase Diagram (ASM Int., 1990).

Google Scholar

[10] R.R. Chromik, W.K. Neils and E.J. Cotts: J. Appl. Phys. Vol. 86 (1999), p.4273.

Google Scholar

[11] J. Yang, H.B. Zhang, K. Tao and Y.D. Fan: Appl. Phys. Lett. Vol. 64 (1994), p.1800.

Google Scholar

[12] S. Hymes, K.S. Kumar, S.P. Murarka, P.J. Ding, W. Wang and W.A. Lanford: J. Appl. Phys. Vol. 83 (1998), p.4507.

Google Scholar

[13] W. Wang, D. Yang, X. Ma and D. Que: J. Appl. Phys. Vol. 104 (2008), p.013508.

Google Scholar

[14] Th. Schubert, B. Trindade, T. Weißgärber and B. Kieback: Mater. Sci. Eng. A Vol. 475 (2008), p.39.

Google Scholar

[15] J.R. Pickens: J. Mater. Sci. Vol. 16 (1981).

Google Scholar