The Effect of Lattice Misfit on Deformation Mechanisms at High Temperature

Article Preview

Abstract:

Understanding the relationship between deformation mechanisms and microstructure is essential if one wants to fully exploit the potential of advanced nickel base superalloys and develop future alloys. In the present work, the influence of the lattice misfit between  and ’ has been studied by means of in-situ loading experiments using neutron diffraction in combination with crystal plasticity modelling on RR1000 and Alloy 720Li. Both alloys were processed to generate three simplified uni-modal γ’ microstructures to allow determination of γ’ responses and experiments were carried out at 750°C. The results showed that a positive misfit strain increases the level of load partitioning from  to ’ during plastic deformation introduced by uniaxial tensile loading.

You have full access to the following eBook

Info:

[1] C.T. Sims, N.S. Stolokoff and W.C. Hagel, John Wiley & Sons, (1987).

Google Scholar

[2] R.J. Mitchell, M. Preuss and M.J. Hardy, Met. Trans. A, 38a, (2007), 615-627.

Google Scholar

[3] R.J. Mitchell, M. Preuss, M.J. Hardy and S. Tin, Mater. Sci. Eng. A, 423, (2006), 282-291.

Google Scholar

[4] R.J. Mitchell, M. Preuss, S. Tin and M.C. Hardy, Mater. Sci. Eng. A, 473, (2008), 158-165.

Google Scholar

[5] J. LI and R.P. WAHI, Acta metall. Mater., 43, 2, (1995), 507-517.

Google Scholar

[6] R.C. Reed, Cambridge Univeristy Press, (2006).

Google Scholar

[7] N. S. Stoloff, John Wiley & Sons, (1987), 61-96.

Google Scholar

[8] M. Preuss, J. Quinta da Fonseca, B. Grant, E. Knoche, R. Moat and M. Daymond, (2008).

Google Scholar

[9] M. P. Jackson and R. C. Reed, Materials Science and Engineering A, 259, 1, (1999), 85-97.

Google Scholar

[10] M. R. Daymond, M. Preuss and B. Clausen, Acta Materialia, 55, 9, (2007), 3089-3102.

Google Scholar

[11] S.J. Hessell, W. Voice, A.W. James, S.A. Blackham, C.J. Small and M.R. Winstone, (1999).

Google Scholar

[12] M.C. Hardy, B. Zirbel, G. Shen and R. Shankar, (2004), 83-90.

Google Scholar

[13] F. Torster, G. Baumeister, J. Albrecht, G. Lutjering, D. Helm and M.A. Daeubler, Mater. Sci. Eng. A, (1997), 189-192.

Google Scholar

[14] J. R. Santisteban, M. R. Daymond, J. A. James and L. Edwards, Applied Crystalography, 39, (2006), 812-825.

Google Scholar

[15] H. J. Stone, T. M. Holden and R. C. Reed, Acta Mater, 47, 17, (1999), 4435-4448.

Google Scholar

[16] B. Clausen, T. Lorentzen, M.A.M. Bourke and M.R. Daymond, Mater. Sci. Eng. A, 259, (1999), 17-24.

Google Scholar

[17] A.E. Staton-Bevan and R.D. Rawlings, Physica Status Solidi A – Applied Research, 29, (1975), 613-622.

Google Scholar

[18] J.S. Kohler and F. Seitz, J. Appl. Mech., 14, (1945), A217-A224.

Google Scholar

[19] R.J. Taunt and B. Ralph, Philosophical Magazine, 30, (1974), 1379-1394.

Google Scholar

[20] A. Kostka, G. Malzer, G. Eggeler, A. Dlouhy, S. Reese and T. Mack, J. Mater. Sci., 42, (2007), 3951-3957.

Google Scholar

[21] G. Eggeler and A. Dlouhy, Acta Mater, 45, 10, (1997), 4251-4262.

Google Scholar

[22] P.J. Phillips, R.R. Unocic, L. Kovarik, D. Mourer, D. Wei and M.J. Mills, Scripta Mat., 62, 10, (2010), 790-793.

DOI: 10.1016/j.scriptamat.2010.01.044

Google Scholar

[23] D. Bettge and W. Osterle, Scripta Mat., 40, 4, (1999), 389-395.

Google Scholar