A Comparison between B4C-ZrB2-Al Composite and B4C-Al Composite on Microstructure and Mechanical Properties

Article Preview

Abstract:

B4C-Al and B4C-ZrB2-Al composites were fabricated by infiltrating aluminum into porous B4C and B4C-ZrB2 preforms in vacuum. The effect of ZrB2 addition on the microstucture and mechanical properties of the B4C-Al composites were investigated. The flexural strength and the fracture toughness of composite improved greatly as the result of ZrB2 addition. The ZrB2 addition inhibited the reaction between B4C and Al. The infiltrated aluminum addition was the leading reason for the fracture toughness improvement of the composites. Inter/transgranular fracture mode with many tear ridges and dimples was showing in the fracture surface of the B4C-ZrB2-Al composite. The relationships between the microstructures and the mechanical properties of the B4C-ZrB2-Al composites were discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-76

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Fanchini, V. Gupta, A.B. Mann, M. Chhowalla: In situ monitoring of structural changes in boron carbide under electric fields. J. Am. Ceram. Soc., 91, 8 (2008), pp.2666-2669.

DOI: 10.1111/j.1551-2916.2008.02488.x

Google Scholar

[2] S. Hayun, D. Rittel, N. Frage, M.P. Dariel: Static and dynamic mechanical properties of infiltrated B4C-Si composites. Mater. Sci. Eng. A 487, 1-2 (2008), pp.405-409.

DOI: 10.1016/j.msea.2007.11.062

Google Scholar

[3] T.K. Roy, C. Subramanian, A.K. Suri: Pressureless sintering of boron carbide. Ceram. Int. 32, 3 (2006), pp.227-233.

DOI: 10.1016/j.ceramint.2005.02.008

Google Scholar

[4] H. Lee, R.F. Speyer, W.S. Hackenberger: Sintering of boron carbide heat-treated with hydrogen. J. Am. Ceram. Soc. 85, 8 (2002), pp.2131-2133.

DOI: 10.1111/j.1151-2916.2002.tb00420.x

Google Scholar

[5] M.W. Chen, J.W. McCauley, J.C. LaSalvia, K.J. Hemker: Microstructural characterization of commercial hot-pressed boron carbide ceramics. J. Am. Ceram. Soc. 88, 7 (2005), pp.1935-1942.

DOI: 10.1111/j.1551-2916.2005.00346.x

Google Scholar

[6] E.M. Heian, S.K. Khalsa, J.W. Lee, Z.A. Munir: Synthesis of dense, high-defect-concentration B4C through mechanical activation and field-assisted combustion. J. Am. Ceram. Soc. 87, 5 (2004), pp.779-783.

DOI: 10.1111/j.1551-2916.2004.00779.x

Google Scholar

[7] L.S. Sigl, H.J. Kleebe: Microcracking in B4C-TiB2 composites. J. Am. Ceram. Soc., 78, 9 (1995), pp.2374-2380.

DOI: 10.1111/j.1151-2916.1995.tb08671.x

Google Scholar

[8] J. Jung, S. Kang: Advances in manufacturing boron carbide-aluminum composites. J. Am. Ceram. Soc. 87, 1 (2004), pp.47-54.

Google Scholar

[9] T.S. Srivatsan, G. Guruprasad, D. Black, R. Radhakrishnan, T.S. Sudarshan: Influence of TiB2 content on microstructure and hardness of TiB2-B4C composite. Powder Technol. 159, 3 (2005), pp.161-167.

DOI: 10.1016/j.powtec.2005.08.003

Google Scholar

[10] M.F. Ashby, F.J. Blunt, M. Bannister: Flow characteristics of highly constrained metal wires. Acta Metall., 37, 7(1989), pp.1847-1857.

DOI: 10.1016/0001-6160(89)90069-2

Google Scholar

[11] J.F. Bartolome, M. Diaz, J.S. Moya: Influence of the metal particle size on the crack growth resistance in mullite-molybdenum composites. J. Am. Ceram. Soc. 85, 11 (2002), pp.2778-2784.

DOI: 10.1111/j.1151-2916.2002.tb00528.x

Google Scholar

[12] S.I. Cha, S.H. Hon, G.H. Ha, B.K. Kim: Mechanical properties of WC-10Co cemented carbides sintered from nanocrystalline spray conversion processed powders. Int. J. Refract. Met. Hard Mater. 19, 4-6 (2001), pp.397-403.

DOI: 10.1016/s0263-4368(01)00057-9

Google Scholar

[13] S. Dubey, T.S. Srivatsan, W.O. Soboyejo: Fatigue crack propagation and fracture characteristics of in-situ titanium-matrix composites. Int. J. Fatigue, 22, 2 (2000), pp.161-174.

DOI: 10.1016/s0142-1123(99)00114-0

Google Scholar

[14] J.A. Yeomans: Ductile particle ceramic matrix composites—Scientific curiosities or engineering materials. J. Eur. Ceram. Soc. 28, 7 (2008), pp.1543-1550.

DOI: 10.1016/j.jeurceramsoc.2007.12.009

Google Scholar

[15] P. Van Houtte, L. Delannay, S.E. Schoenfeld: The work of crack formation as measure of toughness of hard metals. Int. J. Plasticity Vol. 7(1983), pp.107-110.

Google Scholar

[16] R. Liu, H. Ru, Y. Zhao, D. Tang: In situ synthesis of B4C ceramics toughened by ZrB2 particles. Chin. J. Mater. Res. 20, 6(2006), pp.611-616.

Google Scholar