[1]
Byoungwoo Kang, Gerbrand Ceder: Battery materials for ultrafast charging and discharging. Nature Vol. 458, pp.190-193.
DOI: 10.1038/nature07853
Google Scholar
[2]
Yun Jung Lee, Hyunjung Yi, Woo-Jae Kim, et al.: Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes. Science, 324, 5930(2009), pp.1051-1055.
DOI: 10.1126/science.1171541
Google Scholar
[3]
John B. Goodenough, Youngsik Kim: Challenges for Rechargeable Li Batteries. Chem. Mater., 22, 3(2010), pp.587-603.
Google Scholar
[4]
Wei-Ming Zhang, Jin-Song Hu, Yu-Guo Guo, et al.: Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries. Advanced Materials, 20, 6(2008), pp.1160-1165.
DOI: 10.1002/adma.200701364
Google Scholar
[5]
D Djian, F Alloin, S Martinet and H Lignier: Macroporous poly(vinylidene fluoride) membrane as a separator for lithium-ion batteries with high charge rate capacity. Journal of Power Sources, 187, 2(2009), pp.575-580.
DOI: 10.1016/j.jpowsour.2008.11.027
Google Scholar
[6]
Shahua Huang, Zhaoyin Wen, Xiujian Zhu and Zuxiang Lin: Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries. Journal of Power Sources, 165, 1(2007), pp.408-412.
DOI: 10.1016/j.jpowsour.2006.12.010
Google Scholar
[7]
A. N. Jansen, A. J. Kahaian, K. D. Kepler, et al.: Development of a high-power lithium-ion battery. Journal of Power Sources Vol. 81-82 (1999), pp.902-905.
DOI: 10.1016/s0378-7753(99)00268-2
Google Scholar
[8]
C. M. Julien, M. Massot and K. Zaghib: Structural studies of Li4/3Me5/3O4(Me = Ti, Mn) electrode materials: local structure and electrochemical aspects. Journal of Power Sources, 136, 1(2004), pp.72-79.
DOI: 10.1016/j.jpowsour.2004.05.001
Google Scholar
[9]
F.O. Ernst, H.K. Kammler, A. Roessler, et al.: Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8. Materials Chemistry and Physics, 101, 2-3(2007), pp.372-378.
DOI: 10.1016/j.matchemphys.2006.06.014
Google Scholar
[10]
Rui Cai, Xing Yu, Xiaoqin Liu and Zongping Shao: Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance. Journal of Power Sources, 195, 24(2010), pp.8244-8250.
DOI: 10.1016/j.jpowsour.2010.07.059
Google Scholar
[11]
Hidetoshi Utsunomiya, Tsuyoshi Nakajima, Yoshimi Ohzawa, et al.: Influence of conductive additives and surface fluorination on the charge/discharge behavior of lithium titanate (Li4/3Ti5/3O4). Journal of Power Sources, 195, 19(2010), pp.6805-6810.
DOI: 10.1016/j.jpowsour.2010.04.082
Google Scholar
[12]
Jizhang Chen, Li Yang, Shaohua Fang and Yufeng Tang: Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries. Electrochimica Acta, 55, 22(2010), pp.6596-6600.
DOI: 10.1016/j.electacta.2010.06.015
Google Scholar
[13]
Shahua Huang, Zhaoyin Wen, Bin Lin, et al.: The high-rate performance of the newly designed Li4Ti5O12/Cu composite anode for lithium ion batteries. Journal of Alloys and Compounds, 457, 1-2(2008), 400-403.
DOI: 10.1016/j.jallcom.2007.02.127
Google Scholar
[14]
Da Wang, Hua-Yun Xu, Man Gu and Chun-Hua Chen: Li2CuTi3O8–Li4Ti5O12 double spinel anode material with improved rate performance for Li-ion batteries. Electrochemistry Communications, 11, 1(2009), pp.50-53.
DOI: 10.1016/j.elecom.2008.10.029
Google Scholar
[15]
Hiromasa Shiiba, Masanobu Nakayamab and Masayuki Nogami: Ionic conductivity of lithium in spinel-type Li4/3Ti5/3O4–LiMg1/2Ti3/2O4 solid-solution system. Solid State Ionics, 181, 21-22(2010), pp.994-1001.
DOI: 10.1016/j.ssi.2010.06.003
Google Scholar