Synthesis and Gas Sensitivity of SnO2 Nanoparticles

Article Preview

Abstract:

Tin dioxide (SnO2) nanoparticles have been synthesized in bulk quantity by thermal evaporation of SnO powder. The x-ray powder diffraction (XRD) analysis indicates that the nanoparticles are the tetragonal rutile structure of SnO2. Scanning electron microscopy (SEM) analysis shows that the size of the synthesized SnO2 nanoparticles is relatively homogeneous with diameter of about 10 nm. Gas-sensing components have been manufactured with the SiO2 nanoparticles. Their performances indicate that it has high sensitivity and selectivity to LPG, and the max sensitivity appears at 280°C, compared with C2H5OH, H2, CO and CH4.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-96

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Shimizu, E.D. Bartolomeo, E. Traversa, et al.: Effect of surface modification on No.2 sensing properties of SnO2 varistor-type sensors. Sens. Actuators B, Vol. 60 (1999), p.118.

DOI: 10.1016/s0925-4005(99)00250-6

Google Scholar

[2] M. Nitta, M. Haradome: Semiconductor gas sensors. Journal of Applied physics, Vol. 48 (1979), p.977.

Google Scholar

[3] W. Liu, X. Cao, Y. Zhu, et al.: The effect of dopants on the electronic structure of SnO2 thin film. Actuators B Chem. Vol. 66 (2000), p.219.

DOI: 10.1016/s0925-4005(00)00347-6

Google Scholar

[4] S.G. Ansari, P. Boroojerdian, S.R. Sainkar, et al.: Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles. Thin Solid Films, Vol. 295 (1997), p.271.

DOI: 10.1016/s0040-6090(96)09152-3

Google Scholar

[5] R. Ramamoorthy, M.K. Kennedy, H. Nienhaus, et al.: Surface oxidation of monodisperse SnOx nanoparticles. Sensors and Actuators B, Vol. 88 (2003), p.281.

DOI: 10.1016/s0925-4005(02)00370-2

Google Scholar

[6] J.R. Zhang, L. Gao: Synthesis and characterization of nanocrystalline tin oxide by sol-gel method. J. Solid State Chem. Vol. 177 (2004), p.1425.

DOI: 10.1016/j.jssc.2003.11.024

Google Scholar

[7] H.C. Chiu, C.S. Yeh: Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol. J. Phys. Chem. C, Vol. 111(2007), p.7256.

Google Scholar

[8] Z.X. Deng, C. Wang, Y.D. Li: New hydrolytic process for producing zirconium dioxide, tin dioxide, and titanium dioxide nanoparticles. J. Am. Ceram. Soc. Vol. 85 (2002), p.2837.

DOI: 10.1111/j.1151-2916.2002.tb00537.x

Google Scholar

[9] E.R. Leite, I.T Weber, E. Longo, et al.: A new method to control particles size and particles size distribution of SnO2 nanoparticles for gas sensor applications. Adv. Mater. Vol. 12(2000), p.965.

DOI: 10.1002/1521-4095(200006)12:13<965::aid-adma965>3.0.co;2-7

Google Scholar

[10] M.A. Taglienta, V. Bello, G. Pellegrini, et al.: Synthesis and characterization of SnO2 nanoparticles embedded in silica by ion implantation. Nuclear Instruments and Methods in Physics Research B, Vol. 268(2010), p.3063.

DOI: 10.1016/j.nimb.2010.05.042

Google Scholar

[11] E.R. Leite, J.W. Gomez, M.M. Oliveira, et al.: Synthesis of SnO2 nanoribbons by a carbothermal reduction process. J. Nanosci. Nanotechnol. Vol. 2(2002), p.125.

Google Scholar

[12] S.H. Luo, Q. Wan, W.L. Liu, et al.: Photoluminescence properties of SnO2 nanowhiskers grown by thermal evaporation. Prog. Solid State Chem. Vol. 33(2005), p.287.

DOI: 10.1016/j.progsolidstchem.2005.11.008

Google Scholar

[13] J. Pal, P. Chauhan: Structural and optical characterization of tin dioxide nanoparticles prepared by a surfactant mediated method. Mater. Charact. Vol. 60(2009), p.1512.

DOI: 10.1016/j.matchar.2009.08.007

Google Scholar