Optimal Recovery for Some Infinitely Differentiable Periodic Functions

Article Preview

Abstract:

We determine the optimal convergence rate of Dirichlet interpolating algorithm. Asymptotic inequalities are found for the upper bounds of approximation by trigonometric interpolation on the classes of convolutions of periodic functions admitting regular. The optimal order of m-th minimum linear intrinsic error is determined. By means of previous results about n-widths, we discuss the optimality of interpolation method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 282-283)

Pages:

240-243

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.S. Fang, F. J. Hickernell and H.A. Li: J. Complexity, 21 (2005) , p.294.

Google Scholar

[2] J.B. Luo and Y.S. Sun: Adva. Math. , 27 (1998), p.69 (In Chinese).

Google Scholar

[3] S.N. Kudryavtsev: Izv. RAN. Math., 62 (1998), p.19.

Google Scholar

[4] A.K. Kushpel, Ukrainian Math. Jour., 42 (1990), p.279.

Google Scholar

[5] C.A. Micchelli and T.J. Rivlin: A survey of optimal recovery, in Optimal Estimation in Approximation Theory (Plenum Press, the United States of America 1977), p.1.

DOI: 10.1007/978-1-4684-2388-4_1

Google Scholar

[6] S. Smale and D.X. Zhou: Anal. Appl., 1 (2003), p.17.

Google Scholar

[7] A.I. Stepanets: Classification and approximation of periodic functions (Naukova Dumka, Ukraine 1987).

Google Scholar

[8] V.N. Temlyakov: Mat. Zametki, 47 (1960), p.155.

Google Scholar

[9] V.N. Temlyakov: Approximation of periodic functions (Nova Science, the United States of America 1993).

Google Scholar