Research on Second Harmonic Generation in Two-Dimensional Periodical Nonlinear Photonic Crystals Based on Intelligent Materials

Article Preview

Abstract:

The works are focused on finding out proper shape of reversed domains to obtain effective harmonic generations with high conversion efficiency. The conversion efficiency of second harmonic wave in two-dimensional nonlinear photonic crystals consisting of square lattice and reversed domains of various shapes are studied numerically. The shapes of reversed domains are extended from circle, square to ellipse and rectangle. The conversion efficiency of different order quasi-phase matched process can be maximized by adjusting the orientation of noncircular reversed domains. Moreover, a cross-shaped reversed domain is utilized to improve the conversion efficiency of two-order non-collinear quasiphase matching.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 282-283)

Pages:

716-720

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. A. Armstrong, N. Bloembergen, J. Ducuing and P. S. Pershan, Phys. Rev., 127, 1918 (1962).

Google Scholar

[2] P. A. Franken, A. E. Hill, C. W. Peters and G. Weinreich, Phys. Rev. Lett., 7, 118 (1961).

Google Scholar

[3] K. Fradkin-kashi, A. Arie, P. Urenski, and G. Rosenman, Phys. Rev. Lett. 88, 023903 (2002).

DOI: 10.1103/physrevlett.88.023903

Google Scholar

[4] R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett. 95, 133901 (2005).

Google Scholar

[5] C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, Appl. Phys. Lett. 86, 181105 (2005).

DOI: 10.1063/1.1921360

Google Scholar

[6] J. H. Kim and C. S. Yoon, Appl. Phys. Lett., 81, 3332 (2002).

Google Scholar

[7] K. R. Parameswaran, J. R. Kurz, R. V. Roussev and M. M. Fejer, Opt. Lett., 27, 43 (2002).

Google Scholar

[8] S. N. Zhu, Y. Y. Zhu, Z. J. Yang, F. F. Wang, Z. Y. Zhang and N. B. Ming, Appl. Phys. Lett., 67, 320 (1995).

Google Scholar

[9] P.Xu, S.H. Ji, S.N. Zhu, X.Q.Yu, J.Sun, H.T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, Phys. Rev. Lett. 93, 133904 (2004).

Google Scholar

[10] P. G. Ni, B. Q. Ma, X. H. Wang, B. Y. Cheng, and D. Z. Zhang, Appl. Phys. Lett. 82, 4230 (2003).

Google Scholar

[11] B. Q. Ma, T. Wang, P. G. Ni, B. Y. Cheng, and D. Z. Zhang, Europhys. Lett., 68, 804 (2004).

Google Scholar

[12] M. Baudier-Raybaut, R. haïdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, Nature (London) 432, 374 (2004).

DOI: 10.1038/nature03027

Google Scholar

[13] N.G.R. Broderick, G.W. Ross, H. L. Oerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).

Google Scholar

[14] S. M. Russell, P. E. Powers, M. J. Missey, and K. L. Schepler, IEEE J. Quantum Electron. 37, 877 (2001).

Google Scholar

[15] Z.Y. Li, and L.L. Lin,, Phys. Rev. E 67 046607 (2003).

Google Scholar

[16] Z.Y. Li, and K.M. Ho , Phys. Rev. B 68 245117 (2003).

Google Scholar

[17] J. J. Li, Z. Y. Li, and D. Z. Zhang, Phys. Rev. E 75, 056606 (2007).

Google Scholar

[18] V. G. Dmitriev, G. G. Gurazdyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, Berlin, 1997).

Google Scholar

[19] G. J. Edwards, and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).

Google Scholar