Determination of Multi-Objective Optimization Control Variable Domain Value in Coordinated Control System of Coal-Fired Unit

Article Preview

Abstract:

The accuracy of the variables variation scope in fitness function of the multi-objective optimization have an important influence to multi-objective optimization results. Take a 300 MW coal-fired unit as an example, according to the system mechanism builds a boiler-turbine dynamic model. And put forward a method, in this paper, which is using the iteration way and observing its physical significance to determine control system variables scope. The simplified model uses fuel value, turbine value and feedwater value as the inputs, and uses power, feedwater flow and absorbed heat of water wall as the outputs, to get the boundary of the pressure and the control value of the inputs during 50%-100% load.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 282-283)

Pages:

726-730

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tian Liang, Zeng Deliang, Liu Jizhen and Zhao Zheng. A simplified non-linear dynamic model of 330MW unit. Proceedings of the CSEE, Vol. 8 (2004), pp.180-184.

Google Scholar

[2] Rau1 Garduno-Ramirez. Overall intelligent hybrid control system for a fossil—fuel power unit. The Penn-sylvania State University, (2000).

Google Scholar

[3] Liu Changliang, Niu Yuguang, Liu Jizhen, Jin Xiuzhang. A boiler mode of 300MW power unit for control system performance studises. Journal of system simulation, vol. 13(2001), pp.59-61.

DOI: 10.1109/isie.2001.931667

Google Scholar

[4] K.J. Astrom, K. Ecklund. A simplified nonlinear model of a drum boiler-turbine unit. Int J Control, Vol. 1(1972), pp.145-169.

Google Scholar

[5] K.J. Astrom, R.D. Bell. Drum-boiler dynamics. Automatica, Vol. 16(2000), pp.363-378.

Google Scholar

[6] Liu Changliang, Liu Jizhen. Nonlinear boiler model of 300MW power unit for system dynamic performance studies. 2001 IEEE International Symposium on Industrial Electronics Proceedings, Pusan, Korea, (2001), pp.1296-1300.

DOI: 10.1109/isie.2001.931667

Google Scholar

[7] T.S. Pedersen, T. Hansen, M. Hangstrup. Process-optimization multivariable control of a boiler system. 1996 IEEE UKACC International Conference on CONTROL'96, (1996), pp.787-792.

DOI: 10.1049/cp:19960652

Google Scholar

[8] M.E. Flynn, M.J. O'Malley. A drum boiler model for long term power system dynamic simulation. IEEE Transactions on power system, Vol. 1(1999), pp.209-217.

DOI: 10.1109/59.744528

Google Scholar

[9] Hacene Habbi, Mimoun Zelmat, Belkacem Ould Bouamama. A dynamic fuzzy model for a drum-boiler-turbine system . Automatica, Vol. 39(2003), pp.1213-1219.

DOI: 10.1016/s0005-1098(03)00075-x

Google Scholar

[10] Henryk Rusinowski, Wojciech Stanek. Hybrid model of steam boiler . Energy, Vol. 35(2010), pp.1107-1113.

DOI: 10.1016/j.energy.2009.06.004

Google Scholar

[11] H. Kim, S. Choi. A model on water level dynamics in natural circulation drum-type boilers. International Communication in Heat and Mass Transfer, Vol. 32(2005), pp.786-796.

DOI: 10.1016/j.icheatmasstransfer.2004.10.010

Google Scholar

[12] C. Maffezzoni. Boiler-turbine dynamics in power-plant control . Control Eng. Practice, Vol. 3, (1997), pp.301-312.

DOI: 10.1016/s0967-0661(97)00007-5

Google Scholar