Synthesis of C60-Doped Polyaniline Nanoshuttles

Article Preview

Abstract:

Polyaniline–C60 nanoshuttle composites have been successfully synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in the presence of C60 using an interfacial reaction at room temperature, in which the molar ratio of oxidant to monomer was kept at 0.25:1. The influence of initial C60/aniline molar ratio on the supramolecular structure of the composites was studied. It was found that at low molar ratio (0.01:1) amorphous powders could be synthesized, while the as-synthesized products at the higher molar ratio (0.04:1) were shuttle-like superstructures. FTIR and UV-vis spectroscopy confirmed the presence of C60 in the resultant nanocomposite and suggested significant interaction of polyaniline with C60. The evolution of supramolecular structure of polyaniline nanoshuttle–C60 nanocomposites was discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

1010-1013

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Zengin, W. Zhou, J. Jin, R. Czerw, D. W. Smith, L. Echegoyen, D. L. Carroll, S. H. Foulger, J. Ballato: Adv. Mat. Vol. 14 (2004), p.1480.

DOI: 10.1002/1521-4095(20021016)14:20<1480::aid-adma1480>3.0.co;2-o

Google Scholar

[2] N. R. Chiou, L. J. Lee, A. J. Epstein: Chem. Mater. Vol. 19 (2007), p.3589.

Google Scholar

[3] H. Qiu, J. Zhai, S. Li, L. Jiang, M. Wan: Adv. Funct. Mater. Vol. 13 (2003), p.925.

Google Scholar

[4] G. Li, H. Peng, Y. Wang, Y. Qin, Z. Cui, Z. Zhang: Macromol. Rapid Commun. Vol. 25 (2004), p.1611.

Google Scholar

[5] C. Zhou, J. Han, G. Song, R. Guo: Macromolecules Vol. 40 (2007), p.7075.

Google Scholar

[6] C. Zhou, J. Han, R. Guo: Macromolecules Vol. 41 (2008), p.6473.

Google Scholar

[7] Y. G. Wang, W. Wu, L. Cheng, P. He, C. X. Wang, Y. Y. Xia: Adv. Mater. Vol. 20 (2008), p.2166.

Google Scholar

[8] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl: Science Vol. 258 (1992), p.1474.

Google Scholar

[9] Y. Wei, J. Tian, A. G. MacDiarmid, J. G. Master, A. L. Smith, D. Li: J. Chem. Soc. Chem. Commun. (1993), p.603.

Google Scholar

[10] Sapurina, M. Mokeev, V. Lavrentev, V. Zgonnik, M. Trchová, D. Hlavatá, J. Stejskal: Eur. Polym. J. Vol. 36 (2000), p.2321.

DOI: 10.1016/s0014-3057(00)00012-4

Google Scholar

[11] N. M. Kocherginsky, Z. Wang: Synth. Met. Vol. 156 (2006), p.558.

Google Scholar

[12] J. Huang, R. B. Kaner: J. Am. Chem. Soc. Vol. 126 (2004), p.851.

Google Scholar

[13] Kulszewicz-Bajer, I. Różalska, M. Kurylek: New J. Chem. Vol. 28 (2004), p.669.

Google Scholar

[14] J. Stejskal, I. Sapurina, M. Trchová, E. N. Konyushenko, P. Holler: Polymer Vol. 47 (2006), p.8253.

DOI: 10.1016/j.polymer.2006.10.007

Google Scholar

[15] W. Zheng, M. Angelopoulos, A. J. Epstein, A. G. MacDiarmid: Macromolecules Vol. 30 (1997), p.2953.

Google Scholar

[16] Y. Wei, W. W. Focke, G. E. Wnek, A. Ray, A. G. MacDiarmid: J. Phys. Chem. Vol. 93 (1989), p.495.

Google Scholar

[17] E. M. Geniès, M. Lapkowski, J. F. Penneau: J. Electroanal. Chem. Vol. 249 (1988), p.97.

Google Scholar