Facile Solvothermal Route to Synthesize Indium Tin Oxide Nano-Plates, Nanoparticles and Nanorods

Article Preview

Abstract:

Indium tin oxide (ITO) nanopowders with high crystalline were synthesized by a simple solvothermal method with isopropanol as the selected solvent. X-ray diffraction was employed to characterize the crystal structure and crystalline size while the effect of the reaction time on morphologies was studied by FE-SEM. The results revealed that, with the increase of solvothermal time, the morphologies were evolved gradually from porous plates with high specific surface area to rods with narrow diameter distribution. The solvothermal time has little effect on crystalline size, which is 18nm approximately for all the samples. With the increase of solvothermal time, the electric conductivity decreases slightly first and then increases greatly. The possible mechanisms for the effect of solvothermal time on ITO powder morphologies and electric conductivity are proposed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

1014-1018

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Hedia, S. Moncef and B. Srahim: Sci. Eng., C 26 (2006) 500−504

Google Scholar

[2] H. Mbarek, M. Saadoun and B. Bessaïs: Sens. Lett. 6 (2008) 507–510

Google Scholar

[3] Y. Yang, Q. L. Huang, A. W. Metz, J. Ni, S. Jin, T. J. Marks, M. E. Madsen, A. Divenere and S. T. Ho: Adv. Mater. 16 (2004) 321–324

DOI: 10.1002/adma.200305727

Google Scholar

[4] J. Kois, S. Bereznev, J. Raudoja, E. Mellikov and A. Opik: Sol. Energy Mater. Sol. Cells 87 (2005) 657–665

DOI: 10.1016/j.solmat.2004.07.044

Google Scholar

[5] M. Kamei, H. Enomoto and I.Yasui: Thin Solid Films 392 (2001) 265-268

Google Scholar

[6] E. Terzini, P. Thilakan and C. Minarini: Mater. Sci. Eng., B 77 (2000) 110-114

Google Scholar

[7] R. B. H. Tahar, T. Ban, Y. Ohya and Y. Takahashl: J. Appl. Phys. 83 (1997) 2631-2645

Google Scholar

[8] Y. S. Cho, J. J. Hong, Y. K. Kim, K. C. Chung, C. J. Choi: Korean J. Metals Mater. 48 (2010) 831-841

Google Scholar

[9] G.. Guenther, G. Schierning, R. Theissmann, R. Kruk, R. Schmechel, C. Baehtz and A. Prodi-Schwab: J. Appl. Phys. 104 (2008) 034501

DOI: 10.1063/1.2958323

Google Scholar

[10] K. Y. Kima and S. B. Park: Mater. Chem. Phys. 86 (2004) 210–221

Google Scholar

[11] S. T. Li, X. L. Qiao, J. G. Chen, H. S. Wang, F. Jia and X. L. Qiu: J. Cryst. Growth 289 (2006) 151–156

Google Scholar

[12] Y. Endo, T. Sasaki, K. Kanie and A. Muramatsu: Chem. Lett. 37 (2008) 1278–1279

Google Scholar

[13] C. Goebbert, H. Bisht, N. A. Dahoudi, R. Nonninger, M.A. Aegerter and H. Schmidt: J. Sol-Gel Sci. Tech. 19 (2000) 201–204

DOI: 10.1023/a:1008728103512

Google Scholar

[14] Y. Y. GU, L. P. Qin, M. J. Wang and X. Y. Liu: J. Cent.South Univ. Technol. 15 (2008) 763-767

Google Scholar

[15] J. Q. Xu, Y. P. Chen, Q. Y. Pan1, Q. Xiang, Z. X. Cheng and X. W. Dong: Nanotechnology 18 (2007) 115615(7pp)

Google Scholar

[16] C. Q. Wang, D. R. Chen and X. L. Jiao: J. Phys. Chem. C 113 (2009) 7714–7718

Google Scholar

[17] G. Frank, E. Kauer and H. Kostlin: Thin Solid Films 77 (1981) 107–118

Google Scholar

[18] D. Kim, Y. Han, J. S. Cho and S. K. Koh: 377 (2000) 81–86

Google Scholar

[19] P. Thilakan and J. Kumar: Vacuum 48 (1997) 463–466

Google Scholar

[20] J. S. Lee and S. C. Choi: J. Eur. Ceram. Soc. 25 (2005) 3307–3314

Google Scholar