Comparison of Lu0.7Y0.3AP:Ce and Bi4Ge3O12 Scintillators in Gamma Ray Spectrometry

Article Preview

Abstract:

The scintillation response of Lu0.7Y0.3AP:Ce and Bi4Ge3O12 scintillation crystals have been compared using photomultiplier tube readout for photon energies ranging from 22.1 to 1274.5 keV. Lu0.7Y0.3AP:Ce showed a light yield non-proportionality of about 20% upon lowering energy from 1,274.5 to 22.1 keV, which is better than that of about 39% obtained for Bi4Ge3O12. Lu0.7Y0.3AP:Ce showed the light yield of 13,400 ph/MeV and energy resolution of about 8 % for 662 keV gamma rays from a 137Cs source. The photofraction of Bi4Ge3O12 is better than that of Lu0.7Y0.3AP:Ce. The intrinsic resolution of the crystals versus energy of gamma rays has been determined after correcting the measured energy resolution for photomultiplier tube statistics.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

2008-2013

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.W.E. van Eijk : Nucl. Instrum. Methods Phys. Res.A, Vol. 460 (2001), p.1

Google Scholar

[2] M. Moszynski: Nucl. Instrum. Methods Phys. Res.A, Vol. 505 (2003), p.101

Google Scholar

[3] P. Lecoq, A. Annenkov, A. Gektin, M. Korzhik, and C. Pedrini : Inorganic Scintillators for Detector Systems, the Netherlands, Springer (2006)

Google Scholar

[4] J.D. Valentine, B.D. Rooney, and J. Li : IEEE Trans. Nucl. Sci.,Vol 45 (1998), p.512

Google Scholar

[5] M. Moszynski, J. Zalipska, M. Balcerzyk, M. Kapusta, W. Mengeshe, and J.D. Valentine : Nucl. Instrum. Methods Phys. Res.A, Vol. 484 (2002), p.259

Google Scholar

[6] W. Chewpraditkul, L. Swiderski, and M. Moszynski: NUKLEONIKA, Vol. 53 (2008), p.51

Google Scholar

[7] E.P. Sysoeva, O.V. Zelenskaya, and E.V. Sysoeva : IEEE Trans. Nucl. Sci.,Vol 43 (1996), p.1282

DOI: 10.1109/23.506678

Google Scholar

[8] M. Moszynski, M. Balcerzyk, W. Czarnacki, M. Kapusta, W. Klamra, A. Syntfeld, and M. Szawlowski : IEEE Trans. Nucl. Sci.,Vol 51 (2004), p.1074

DOI: 10.1109/tns.2004.829491

Google Scholar

[9] W. Chewpraditkul, L. Swiderski, M. Moszynski, T. Szczesniak, A. Syntfeld-Kazuch, C. Wanarak, and P. Limsuwan : Phys. Status Solidi A (2009), p.1

DOI: 10.1109/tns.2009.2033994

Google Scholar

[10] Z. Guzik, S. Borsuk, K. Traczyk, and M. Plominski : IEEE Trans. Nucl. Sci.,Vol 53, no.1 (2006), p.231

Google Scholar

[11] M. Bertolaccini, S. Cova, and C. Bussolatti : in Proc. Nuclear Electronics Symp., Versailles, France (1968)

Google Scholar

[12] M. Moszynski, M. Kapusta, M. Mayhugh, D. Wolski, and S.O. Flyckt : IEEE Trans. Nucl. Sci., Vol.44, no.3 (1997), p.1052

DOI: 10.1109/23.603803

Google Scholar

[13] M. Moszynski et al : IEEE Trans. Nucl. Sci., Vol.57, no.5 (2010), p.2886

Google Scholar

[14] C. Kuntner, E. Auffray, P. Lecoq, C. Pizzolotto, and M. Schneegans : Nucl. Instrum. Methods Phys. Res.A, Vol. 493 (2002), p.131

Google Scholar

[15] L. Gerward, H. Guilbert, K.B. Iensen, and H. Levring : Radiat. Phys. Chem., Vol.71 (2004), p.653

Google Scholar