Saint Venant Solutions in Symmetric Deformation for Rectangular Transversely Isotropic Magnetoelectroelastic Solids

Abstract:

Article Preview

Hamiltonian system used in dynamics is introduced to formulate the transversely isotropic magnetoelectroelastic solids plane problem in rectangular domain and symplectic dual equation is derived corresponding to the generalized variational principle of the magnetoelectroelastic solids. The equation is expressed with displacements, electric potential and magnetic potential, as well as their duality variables--lengthways stress, electric displacement and magnetic induction in the symplectic geometry space. Since the x-coordinate is treated as time variable so that z becomes the independent coordinate in the Hamiltonian matrix operator. The symplectic dual approach enables the separation of variables to work and all the Saint Venant solutions in the symmetric deformation are obtained directly via the zero eigenvalue solutions and all their Jordan normal form of the corresponding Hamiltonian operator matrix and the boundary condition. An example is presented to illustrate the proposed approach.

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Main Theme:

Edited by:

Xiaoming Sang, Pengcheng Wang, Liqun Ai, Yungang Li and Jinglong Bu

Pages:

2243-2250

DOI:

10.4028/www.scientific.net/AMR.284-286.2243

Citation:

X. C. Li "Saint Venant Solutions in Symmetric Deformation for Rectangular Transversely Isotropic Magnetoelectroelastic Solids", Advanced Materials Research, Vols. 284-286, pp. 2243-2250, 2011

Online since:

July 2011

Authors:

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.