Thermoelectric Properties of Cu-Substituted Bi2Ca2Co2Oy Misfit Oxides

Article Preview

Abstract:

Co2-xCuxOy (x=0.0, 0.2, 0.4) Samples were prepared by solid-state reaction method and the effect of Cu substitution on the thermoelectric properties was investigated. The presence of Cu element improved the grain size and electrical conductivity, but Seebeck coefficients were reduced by Cu substitution. It was found Cu substitution is an effective way to improve the thermoelectric performance system at high temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

2263-2267

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Terasaki, Y. Sasago and K. Uchinokura: Phys. Rev. B Vol. 56 (1997), p.12685.

Google Scholar

[2] G. Peleckis, T. Motohashi, M. Karppinen and H. Yamauchi: Appl. Phys. Lett. Vol. 83 (2003), p.5416.

Google Scholar

[3] S. Tajima, T. Tani, S. Isobe and K. Koumoto: Mater. Sci. Eng. B Vol. 86 (2001), p.20.

Google Scholar

[4] H. S. Hao, Q. L. He, C. Q. Chen, H. W. Sun and X. Hu: Int. J. Mod. Phy. B Vol. 23 (2009), p.87.

Google Scholar

[5] H. S. Hao, L. M. Zhao and X. Hu: J. Mater. Sci. Technol. Vol. 25 (2009), p.105.

Google Scholar

[6] F. Zhang, Q. Lu and J. Zhang: Physica B Vol. 404 (2009), P. 2142.

Google Scholar

[7] H. Itahara, C. Xia, J. Sugiyama and T. Tani: Chem. Mater. Vol. 14 (2004), P. 61.

Google Scholar

[8] R. Funahashi and M. Shikano: Appl. Phys. Lett. Vol. 81 (2002), P. 1459.

Google Scholar

[9] M. Hervieu, A. Maignan, C. Michel, V. Hardy, N. Creon and B. Raveau: Phys. Rev. B Vol. 67 (2003), P. 045112.

Google Scholar

[10] T. Motohashi, Y. Nonaka, K. Sakai, M. Karppinen and H. Yamauchi: J. Appl. Phys. Vol. 103 (2008), P. 033705.

Google Scholar

[11] M. Ito, T. Nagira and S. Hara: J. Alloy. Compd. Vol. 408-412 (2006), P. 1217.

Google Scholar

[12] K. Park and K. U. Jang: Mater. Lett. Vol. 60 (2006), P. 1106.

Google Scholar

[13] I. Terasaki, I. Tsukada and Y. Iguchi: Phys. Rev. B Vol. 65 (2002), P. 195106.

Google Scholar

[14] G. Xu, R. Funahashi, M. Shikano, I. Matsubara and Y. Zhou: Appl. Phys. Lett. Vol. 80 (2002), P. 3760.

Google Scholar

[15] H. S. Hao, S. F. Li, L. M. Zhao and X. Hu: Int. J. Mod. Phys. B Vol. 23 (2009), P. 3777.

Google Scholar

[16] D. L. Wang, L. D. Chen, Q. Yao and J. G. Li: Solid State Commun. Vol. 129 (2004), P. 615.

Google Scholar

[17] K. Sakai, T. Motohashi, M. Karppinen and H. Yamauchi: Thin Solid Films Vol. 486 (2005), P. 58.

Google Scholar

[18] K. Sakai, M. Karppinen, J. M. Chen, R. S. Liu, S. Sugihara and H. Yamauchi: Appl. Phys. Lett. Vol. 88 (2006), P. 232102.

Google Scholar

[19] A. Sotelo, E. Guilmeau, Sh. Rasekh, M. A. Madre, S. Marinel, J. C. Diez: J. Eur. Ceram. Soc. Vol. 30 (2010), P. 1815.

Google Scholar

[20] K. Park, K. Y. Ko, J. Kim and W. Chom: Mater. Sci. Eng. B Vol. 129 (2006), P. 200.

Google Scholar

[21] Q. Yao, D. L. Wang, L. D. Chen, X. Shi and M. Zhou: J. Appl. Phys. Vol. 97 (2005), P. 103905.

Google Scholar