Fabrication of Ti66V13Cu8Ni6.8Al6.2 Bulk Composites with High Strength by Spark Plasma Sintering and Crystallization of Amorphous Phase

Abstract:

Article Preview

Ti66V13Cu8Ni6.8Al6.2 bulk composites with high strength were fabricated by spark plasma sintering of amorphous Ti66V13Cu8Ni6.8Al6.2 powder synthesized by mechanical alloying. X-ray diffraction (XRD), differential scanning calorimeter (DSC), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were employed to investigate the synthesized amorphous powder and the fabricated composites. Results show that the supercooled liquid region ΔTx and the crystallization enthalpy DHx of the synthesized amorphous powder decrease, in relative with amorphous Ti66Nb13Cu8Ni6.8Al6.2 powder, indicating that the thermal stability and glass forming ability of the synthesized amorphous powders decreases with vanadium element substituted for niobium element. And particle size of the synthesized amorphous powder also decreases. In addition, the fabricated alloys also consist of body-centered cubic β-Ti (V) and face-centered cubic (Cu, Ni)-Ti2 regions, similar to Ti66Nb13Cu8Ni6.8Al6.2 bulk alloys. The alloys exhibit a high fracture strength around 1966 MPa but limited plasticity.

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Main Theme:

Edited by:

Xiaoming Sang, Pengcheng Wang, Liqun Ai, Yungang Li and Jinglong Bu

Pages:

25-31

DOI:

10.4028/www.scientific.net/AMR.284-286.25

Citation:

X. M. Wu et al., "Fabrication of Ti66V13Cu8Ni6.8Al6.2 Bulk Composites with High Strength by Spark Plasma Sintering and Crystallization of Amorphous Phase", Advanced Materials Research, Vols. 284-286, pp. 25-31, 2011

Online since:

July 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.