Deformation Behavior of a Multiphase Fine-Grained Mo-Si-B Alloy

Article Preview

Abstract:

Mo-9Si-8B-3Hf alloy consisting of a Mo solid solution and intermetallic phases Mo3Si and Mo5SiB2 was fabricated by hot pressing sintering to yield a fine microstructure with all three phases being in the size range of micrometer. The tensile properties of this alloy at elevated temperature were evaluated in vacuum at elevated temperatures. This alloy displayed extensive plasticity or superplasticity at temperatures ranging from 1400 °C to 1560 °C with strain rate of 3×10-4 s-1. The tensile elongation of 410% is measured at 1560 °C. Grain boundary sliding is the main mechanism of plastic deformation for this alloy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

544-549

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Supatarawanich, D. R. Johnson and C. T. Liu: Mater. Sci. Eng. Vol. 344 (2003), p.328.

Google Scholar

[2] D. M. Dimiduk and J. H. Perepezko: MRS. Bull. Vol (28) 2003, p.639.

Google Scholar

[3] D. M. Berczik, US Patent 5, 595, 616, (1997).

Google Scholar

[4] D. M. Berczik, US Patent 5, 693, 616, (1997).

Google Scholar

[5] T. G. Nieh, J. G. Wang and C. T. Liu: Intermetallic Vol 9 (2001), p.73.

Google Scholar

[6] P. Jéhanno, M. Heilmaier, H. Saage, H. Heyse, M. Böning, H. Kestler and J. H. Schneibel: Scripta Mater. Vol 55 (2006), p.525.

DOI: 10.1016/j.scriptamat.2006.05.033

Google Scholar

[7] J. H. Schneibel, M. J. Kramer and D. S. Easton: Scripta Mater. Vol 46 (2002), p.217.

Google Scholar

[8] J. H. Schneibel, R. O. Ritchie, J. J. Kruzic and P. F. Tortorelli: Metall. Mater. Trans. Vol 36 (2005), p.525.

Google Scholar

[9] H. Choe, D. Chen, J. H Schneibel, H. Choe , D. Chen, J. H. Schneibel and R. Ritchie: Intermetallics Vol 9 (2001), p.319.

DOI: 10.1016/s0966-9795(01)00008-5

Google Scholar

[10] M. F. Ashby, F. J. Blunt and M. Bannister: Metall Vol 37 (1989), p.1847.

Google Scholar

[11] P. Jéhanno, M. Heilmaier and H. Kestler: Intermetallics Vol 12 (2004), p.1005.

Google Scholar

[12] P. Jéhanno, M. Heilmaier, H. Kestler, M. Böing, A. Venskutonis, B. Bewlay and M. Jackson: Metall Mater. Trans. Vol 36 (2005), p.515.

DOI: 10.1007/s11661-005-0165-5

Google Scholar

[13] A. P. Alur, N. Chollacoop and K. S. Kumar: Acta Mater Vol 52 (2004), p.5571.

Google Scholar

[14] C. C. Koch, O. B. Cavin, C. G. Mckamey and J. O. Scarbrough: Appl Phys Lett Vol 43 (1983), 1017.

Google Scholar

[15] D. G. Morris and M. A. Morris: Metall Mater. Trans. Vol 38 (1991), p.1763.

Google Scholar

[16] J. L. Yu, K. F. Zhang, Z. K. Li, X. Zheng, G. F. Wang and R. Bai: Scripta Mater. Vol 61(2009), p.620.

Google Scholar

[17] J. L. Yu and K. F. Zhang: Scripta Mater. Vol 59 (2008), 714.

Google Scholar

[18] M. Krüger, S. Franz, H. Saage, M. Heilmaier, J. H. Schneibel and P. Jéhanno: Intermetallics Vol 16 (2008), p.933.

DOI: 10.1016/j.intermet.2008.04.015

Google Scholar

[19] O. D. Sherby and J. Wadsworth: Prog . Mater. Sci. Vol 33 (1989), p.169.

Google Scholar