The Effect of Injection Molding Process Parameters on the Buckling Properties of PBT/Short Glass Fiber Composites

Article Preview

Abstract:

This study investigates the effect of various injection molding process parameters and fiber amount on buckling properties of Polybutylene Terephthalate (PBT)/short glass fiber composite. The buckling specimens were prepared under injection molding process. These forming parameters about filling time, melt temperature and mold temperature that govern injection molding process are discussed. The buckling properties of neat PBT, 15 wt%, and 30 wt% are obtained using two ends fixed fixture and computerized closed-loop server-hydraulic material testing system. The fracture surfaces are observed by scanning electron microscopy (SEM). The global buckling forces are raised when increased the fiber weight percentage of PBT. Also, the fracture mechanisms in PBT and short glass fiber matrix are fiber pullout in skin area and fiber broken at core area. It is found that the addition of short glass fiber can significantly strengthen neat PBT.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

550-556

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Bright P. F.; Darlington M. W. Factors Influencing Fibre Orientation and Mechanical Properties in Fibre Reinforced Thermoplastics Injection Mouldings. In Practical Rheology in Polymer Process, Computers & Chemical Engineering International Conference, Loughborough, England, Mar. 26-27, 1980.

Google Scholar

[2] P. Singh and M.R. Kamal, "The Effect of Processing Variables on Microstructure of Injection Molded Short Fiber Reinforced Poypropylene," Polymer Composites, Vol.10, 1989, pp.344-351.

DOI: 10.1002/pc.750100511

Google Scholar

[3] S. Kenig, "Fiber Orientation Development in Molding of Polymer Composite," Polymer Composites, Vol.7, 1986, pp.50-55.

DOI: 10.1002/pc.750070110

Google Scholar

[4] Barbosa S. E.; Kenny J. M. Analysis of the Relationship Between Processing Conditions- Fiber Orientation- Final Properties in Short Fiber Reinforced Polypropylene. J. Reinf. Plast. Compos. 1999, 18(5), 413-420.

DOI: 10.1177/073168449901800502

Google Scholar

[5] Delpy U.; Fischer G. Effect of Mold-Filling Conditions on Fiber Distribution in Injection-Molded Disks and on the Mechanical Properties of Such Disks. Adv. Polym. Technol. 1985, 5(1) 19-26.

DOI: 10.1002/adv.1985.060050103

Google Scholar

[6] M. Fujiama and H. Awaya, "Mechanical Anisotropy in Injection-Moded Polypropylene", Journal of Applied Polymer Science, Vol.21, 1977, pp.3291-3309.

DOI: 10.1002/app.1977.070211209

Google Scholar

[7] H.T. Hahn, K.L. Jerina and P. Burrett, "Fiber Orientation and Fracture Morphology in Short Fiber-Reinforced Thermoplastics," Advances in Thermoplastic Matrix Composite Materials, ASTM STP 1044, 1989, pp.183-198.

DOI: 10.1520/stp24602s

Google Scholar

[8] Gupta M.; Santhanam N.; Chiang H. H.; Himasekhar K.; Tushak P.; Wang K. K. Prediction of Fiber Orientation and Mechanical Properties in Short-Fiber Reinforced Injection-Molded Composites. The 3rd International Conference on Computer Aided Design in Composite Material Technology, Newark, DE, USA, 1992.

DOI: 10.1007/978-94-011-2874-2_25

Google Scholar

[9] Damle M.; Mehta S.; Malloy R.; McCarthy S. P. Effect of Fiber Orientation on the Mechanical Properties of Injection Molded Part and a Stereolithography- Insert Molded Part. Part 1, Proceedings of the 56th Annual Technical Conference, Atlanta, GA, USA, Apr. 26-30 1998.

Google Scholar

[10] Gennaro A. Glass Reinforced Polyamide Injection Moulded: Fibre Orientation Effects on Properties. Plastics and Rubber Processing and Applications 1988, 9(4), 241-250.

Google Scholar

[11] Jang K.; Cho W. J.; Ha C. S. Influence of Processing Method on the Fracture Toughness of Thermoplastic-Modified, Carbon-Fiber-Reinforced Epoxy Composites. Compos. Sci. Technol. 1999, 59(7), 995-1001.

DOI: 10.1016/s0266-3538(98)00140-7

Google Scholar

[12] Hashemi S.; Koohgilani M. Fracture Toughness of Injection Molded Glass Fiber Reinforced Polypropylene. Polym. Eng. Sci. 1995, 35(13), 1124-1132.

DOI: 10.1002/pen.760351309

Google Scholar

[13] Czigany T.; Ishak Z. A. M.; Heitz T.; Karger-Kocsis J. Effects of Hygrothermal Aging on the Fracture and Failure Behavior in Short Glass Fiber-Reinforced, Toughened Poly(butylenes terephthalate) Composites. Polym. Compos. 1996, 17(6), 900-909.

DOI: 10.1002/pc.10683

Google Scholar

[14] Denault J.; Vu-Khanh T.; Foster B. Tensile Properties of Injection Molded Long Fiber Thermoplastic Composites. Polym. Compos. 1989, 10(5), 313-321.

DOI: 10.1002/pc.750100507

Google Scholar

[15] Jeng M. C.; Fung C. P.; Li T. C. The Study on the Tribological Properties of Fiber-Reinforced PBT Composites for Various Injection Molding Process Parameters. Wear 2002, 252, 934-945.

DOI: 10.1016/s0043-1648(02)00045-5

Google Scholar

[16] Fung C. P.; Hwang J. R.; Hsu C. C. The Effect of Injection Molding Process Parameters on the Tensile Properties of Short Glass Fiber-Reinforced PBT. Polym.-Plast. Technol. Eng. 2003, 42(1), 45-63.

DOI: 10.1081/ppt-120016335

Google Scholar