Electrochemical Properties of Polyaniline/α-Zirconium Phosphate Nanocomposite and the Effect of pH Values

Article Preview

Abstract:

Nanocomposite based on polyaniline (PANI) and α-zirconium phosphate (α-ZrP) has been synthesized by in situ polymerization using aniline intercalation compound (ANI)/ZrP as intermediate. Aniline was successfully intercalated into the interlayer spacing of crystalline α-ZrP forming a double-phase intermediate by adsorption. The intercalated aniline was polymerized by adding appropriate amount of ammonium peroxodisulphate (APS) solution. The synthesized nanocomposites were characterized by XRD, SEM, and FT-IR. X-ray diffraction patterns showed that PANI was formed outside α-ZrP. TGA/DSC analysis showed improved thermal stability for the PANI/ZrP nanocomposite in comparison with pure PANI. The PANI/ZrP nanocomposite was studied by cyclic voltammetry (CV), which revealed good redox activity and electrochemical-cycling stability in acidic solution. The interaction between PANI and nanosheets greatly affected the electrochemical behavior of PANI/ZrP nanocomposite. The electrochemical behavior of PANI/ZrP nanocomposite in HCl solution with different pH values has been studied in detail.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

570-576

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Sanchez, B. Julián, P. Belleville, and M. Popall: J. Mater. Chem., Vol. 15 (2005), p.3559.

Google Scholar

[2] C. G. Wu, and T. Bein: Science, Vol. 264 (1994), p.1757.

Google Scholar

[3] W. Lu, A. G. Fadeev, B. Qi, E. Smela, B. R. Mattes, J. Ding, G. M. Spinks, J. Mazurkiewicz, D. Zhou, G. G. Wallace, D. R. MacFarlane, S. A. Forsyth, and M. Forsyth: Science, Vol. 297 (2002), p.983.

DOI: 10.1126/science.1072651

Google Scholar

[4] P. K. H. Ho, D. S. Thomas, R. H. Friend, and N. Tessler: Science, Vol. 285 (1999), p.233.

Google Scholar

[5] K. Amano, H. Ishikawa, A. Kobayashi, M. Satoh, and E. Hasegawa: Synth. Met., Vol. 62 (1994), p.229.

Google Scholar

[6] A. Ray, G. E. Asturias, D. L. Kershner, A. F. Righter, and A. G. MacDiarmid: Synth. Met., Vol. 29 (1989), p.141.

Google Scholar

[7] A. H. Goff, and M. C. Bernard: Synth. Met., Vol. 60 (1993), p.115.

Google Scholar

[8] Q. Wu, Z. Xue, Z. Qi, and F. Wang: Polymer, Vol. 41, (2000) p. (2029).

Google Scholar

[9] Y. Inui, T. Yui, T. Itoh, K. Higuchi, T. Seki, and K. Takagi:, J. Phys. Chem. B, Vol. 111 (2007), p.12162.

Google Scholar

[10] J. J. Ma, X. B. Zhang, C. Yan, Z. W. Tong, and H. R. Inoue:, J. Mater. Sci., Vol. 43 (2008), p.5534.

Google Scholar

[11] M. G. Kanatzidis, C. G. Wu, H. O. Marcy, D. C. DeGroot, C. R. Kannewurf, A. Kostikas, and V. Papaefthymiou: Adv. Mater., Vol. 2 (1990), p.364.

DOI: 10.1002/adma.19900020806

Google Scholar

[12] D. W. Wang, F. Li, J. Zhao, W. Ren, Z. G. Chen, J. Tan, Z. S. Wu, I. Gentle, G. Q. Lu, and H. M. Cheng: ACS Nano, Vol. 3 (2009), p.1745.

Google Scholar

[13] K. J. Chao, T. C. Chang, and S. Y. Ho: J. Mater. Chem., Vol. 3 (1993), p.427.

Google Scholar

[14] T. C. Chang, S. Y. Ho, and K. J. Chao: J. Phys. Org. Chem., Vol. 7 (1994), p.371.

Google Scholar

[15] Y. J. Liu, and M. Kanatzidis: Chem. Mater., Vol. 7 (1995), p.1525.

Google Scholar

[16] T. Takei, Y. Kobayashi, H. Hata, Y. Yonesaki, N. Kumada, N. Kinomura, and T. E. Mallouk: J. Am. Chem. Soc., Vol. 128 (2006), p.16634.

DOI: 10.1021/ja065677m

Google Scholar

[17] S. De, A. De, A. Das, and S. K. De: Mater. Chem. and Phys., Vol. 91 (2005), p.477.

Google Scholar

[18] D. Tsotcheva1, T. Tsanov1, L. Terlemezyan1 and S. Vassilev J. Therm. Anal. and Calorim., Vol. 63 (2001), p.133.

Google Scholar

[19] A. Clearfield: Ann. Rev. Mater. Sci., Vol. 14 (1984), p.205.

Google Scholar

[20] G. Alberti, M. Casciola, U. Constantino, R. Vivani: Adv. Mater., Vol. 8 (1996), p.291.

Google Scholar

[21] A. Clearfield, and G. D. Smith: Inorg. Chem., Vol. 8 (1969), p.431.

Google Scholar

[22] G. Alberti, and E. Torracca: J. Inorg. Nucl. Chem., Vol. 30 (1968), p.317.

Google Scholar

[23] L. Sun, W. J. Boo, R. L. Browning, H. J. Sue, and A. Clearfield: Chem. Mater., Vol. 17 (2005), p.5606.

Google Scholar

[24] E. T. Tang, K. G. Neoh, and K. L. Tan: Prog. Polym. Sci., Vol. 23 (1998), p.277.

Google Scholar

[25] Y. G. Wang, H. Q. Li, and Y. Y. Xia: Adv. Mater., Vol. 18 (2006), p.2619.

Google Scholar

[26] W. S. Huang, B. D. Humphrey, and A. G. MacDiarmid: J. Chem. Soc., Faraday Trans. 1, Vol. 82 (1986), p.2385.

Google Scholar

[27] G. Yang, W. H. Hou, X. M Feng, L. Xu, Y. G. Liu, G. Wang, and W. P. Ding: Adv. Funct. Mater., Vol. 17 (2007), p.401.

Google Scholar

[28] A. Abd-Elwahed, and R. Holze: Synth. Met., Vol. 131 (2002), p.61.

Google Scholar