Characterization of Heat Storage by Nanocomposite-Enhanced Phase Change Materials

Article Preview

Abstract:

This study involved a two-step method of adding multi-walled carbon nanotube (MWCNTs) and alumina (Al2O3) nanoparticles to paraffin wax, forming nanocomposite-enhanced phase change materials (NEPCMs). The NEPCMs in a phase change experiment were influenced by the concentrations of the nano-materials and the heating temperature of water. The objective of this paper is to investigate the optimal parameters of added nano-materials. The experimental results show that the phase change temperature of the paraffin wax slightly increases after adding the nano-materials to the paraffin wax. In addition, the nano-materials in the paraffin wax will reduce the temperature difference between test samples and heating water, indicating that adding the nano-materials can effectively reduce the thermal resistance of the experimental samples and improve the efficiency of thermal energy storage.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

1448-1455

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Jegadheeswaran, S.D. Pohekar: Renew. Sust. Energ. Rev. Vol. 13 (2009), p.2225.

Google Scholar

[2] A. Abhat, S. Aboul-Enein, N. Malatidis, in: Thermal Storage of Solar Energy, edited by C. Den Quden/ Martinus Nijhoff (1981).

Google Scholar

[3] V.H. Morcos: Solar Wind Technol. Vol. 7 (1990), p.197.

Google Scholar

[4] M. Costa, D. Buddhi, A. Oliva: Energy Convers. Mgmt. Vol. 39 (1998), p.319.

Google Scholar

[5] P.V. Padmanabhan, M.V. Krishna Murthy: Int. J. Heat Mass Trans. Vol. 29 (1986), p.1855.

Google Scholar

[6] R. Velraj, R.V. Seeniraj, B. Hafner, C. Faber, K. Schwarzer: Sol. Energy Vol. 60 (1997), p.281.

Google Scholar

[7] R. Velraj, R.V. Seeniraj, B. Hafner, C. Faber, K. Schwarzer: Sol. Energy Vol. 65 (1999), p.171.

Google Scholar

[8] K.A.R. Ismail, C.L.F. Alves, M.S. Modesto: Appl. Thermal Eng. Vol. 21 (2001), p.53.

Google Scholar

[9] N. Moummi, S. Youcef-Ali, A. Moummi, J.Y. Desmons: Renew. Energy Vol. 29 (2004), p.2053.

DOI: 10.1016/j.renene.2003.11.006

Google Scholar

[10] C.A. Bauer, R.A. Wirtz, in: Thermal characteristics of a compact, passive thermal energy storage device, Proceedings of the 2000 ASME IMECE, Orlando, Florida, USA (2000).

DOI: 10.1115/imece2000-1395

Google Scholar

[11] P. Satzger, B. Exka, F. Ziegler, in: Matrix-heat-exchanger for a latent-heat cold-storage, Proceedings of Megastock '98, Sapporo, Japan (1998).

Google Scholar

[12] H. Mehling, S. Hiebler, F. Ziegler, in: Latent heat storage using a PCM-graphite composite material: advantages and potential applications, Proceedings of the 4th Workshop of IEA ECES IA Annex 10, Bendiktbeuern, Germany (1999).

Google Scholar

[13] H. Mehling, S. Hiebler, F. Ziegler, in: Latent heat storage using a PCM-graphite composite material, Proceedings of Terrastock 2000–8th International Conference on Thermal Energy Storage, Stuttgart, Germany (2000), p.375.

Google Scholar

[14] L.F. Cabeza, H. Mehling, S. Hiebler, F. Ziegler: Appl. Thermal Eng. Vol. 22 (2002), p.1141.

Google Scholar

[15] X. Py, R. Olives, S. Mauran: Int. J. Heat Mass Trans. Vol. 44 (2001), p.2727.

Google Scholar

[16] S.O. Enibe: Renew. Energy Vol. 28 (2003), p.2269.

Google Scholar

[17] H. Benli, A. Durmus: Sol. Energy Vol. 83 (2009), p.2109.

Google Scholar

[18] F.L. Tan, S.F. Hosseinizadeh, J.M. Khodadadi , Liwu Fan: Int. J. Heat Mass Trans. Vol. 52 (2009), p.3464.

Google Scholar

[19] R. Siegel: Int. Heat Mass Trans. Vol. 20 (1977), p.1087.

Google Scholar

[20] J. Fukai, Y. Morozumi, Y. Hamada, O. Miyatake, in: Transient response of thermal energy storage unit using carbon fibers as thermal conductivity promoter, Proceedings of the 3rd European Thermal Sciences Conference, Pisa, Italy (2000).

Google Scholar

[21] J. Fukai, M. Kanou, Y. Kodama, O. Miyatake: Energy Convers. Mgmt. Vol. 41 (2000), p.1543.

Google Scholar

[22] J. Fukai, Y. Hamada, Y. Morozumi, O. Miyatake: Int. J. Heat Mass Trans. Vol. 45 (2002), p.4781.

Google Scholar

[23] M. Xiao, B. Feng, K. Gong: Sol. Energy Mater. Sol. Cells Vol. 69 (2001), p.293.

Google Scholar

[24] J.M. Khodadadi, S.F. Hosseinizadeh: Int. Commun. Heat Mass Transf. Vol. 34 (2007), p.534.

Google Scholar

[25] J.L. Zeng, L.X. Sun, F. Xu, Z.C. Tan, Z.H. Zhang, J. Zhang, T. Zhang: J. Therm. Anal. Calorim. Vol. 87 (2007), p.369.

Google Scholar

[26] Guiyin Fang, Hui Li, Fan Yang, Xu Liu, ShuangmaoWu: Chemical Engineering Journal Vol. 153 (2009), p.217.

Google Scholar

[27] C.J. Ho, J.Y. Gao: Int. Commun. Heat Mass Transf. Vol. 36 (2009), p.467.

Google Scholar