Effect of Growth Temperature on the Indium Incorporation in InGaN Epitaxial Films

Article Preview

Abstract:

InxGa1-xN epilayers have been grown by metalorganic chemical vapor deposition (MOCVD) at different temperatures between 740°C to 830°C. The thickness of InGaN film is 50nm for all samples. The incorporation of indium is found to increase with decreasing grown temperature. The optical properties and film quality of the samples have been investigated by photoluminescence (PL) system and X-ray diffraction (XRD). The Full Width at Half Maximum (FWHM) of PL and XRD decreases with increasing the grown temperature. We also found that the peak emission of PL shifts with changing the grown temperature. The effect of temperature on the film properties was determined. This understanding will lead to better quality control of the optoelectronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

1456-1459

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Mukai, Y. Sugimoto and H. Kiyoku, Appl. Phys. Lett. Vol. 69 (1996), p.4056

DOI: 10.1063/1.117816

Google Scholar

[2] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu, and J. F. Chen, IEEE J. Sel. Top. Quan, Electron., Vol. 8 (2002), p.284

Google Scholar

[3] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett., Vol. 81 (2002), p.1246

Google Scholar

[4] N. Okamoto, K. Hoshino, N. Hara, M. Takikawa, and Y. Arakawa, J. Cryst. Growth, Vol.272 (2004), p.278

Google Scholar

[5] T. M. Kuan, S. J. Chang, Y. K. Su, J. C. Lin, S. C. Wei, C. K. Wang, C. I. Huang, W. H. Lan, J. A. Bardwell, H. Tang, W. J. Lin, and Y. T. Cherng, J. Cryst. Growth, Vol. 272 (2004), p.300

DOI: 10.1016/j.jcrysgro.2004.08.089

Google Scholar

[6] D. J. Kim, Y. T. Moon, K. M. Song, I. H. Lee, and S. J. Park, J. Electronic Materials, Vol.30 (2001), p.99

Google Scholar

[7] Y. T. Moon, D. J. Kim, K. M. Song, I. H. Lee, M. S. Yi, D. Y. Noh, C. J. Choi, T. Y. Seong, and S. J. Park, Phys. Stat. sol., Vol. 216 (1999), p.167

Google Scholar

[8] W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu, and J. F. Chen, IEEE Photon. Technol. Lett., Vol. 13 (2001), p.559

Google Scholar

[9] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, "400nm InGaN/GaN and InGaN/AlGaN multiquantum well light-emitting diodes", IEEE J. Select. Topics Quantum Electron., Vol. 8 (2002), p.744

DOI: 10.1109/jstqe.2002.801677

Google Scholar

[10] C. H. Chen, S. J. Chang, Y. K. Su, J. K. Sheu, J. F. Chen, C. H. Kuo, and Y. C. Lin, "Nitride-based cascade near white light emitting diodes", IEEE Photon. Technol. Lett., Vol. 14 (2002), p.908

DOI: 10.1109/lpt.2002.1012381

Google Scholar

[11] S. Keller, B. P. Keller, D. Kapolnek, U. K. Mishra, S. P. Denbaars, I. K. Shmagin, R. M. Kolbas, and S. Krishnankuty, J. Cryst. Growth, Vol. 170 (1997), p.349

DOI: 10.1016/s0022-0248(96)00553-2

Google Scholar

[12] W. Van Der Stricht, I. Moerman, P. Demeester, L. Considine, E. J. Thrush, and J. A. Crawley, MRS Internet J. Nitride Semicond. Res., Vol. 2 (1997), p.16

DOI: 10.1557/s1092578300001423

Google Scholar