Photocatalytic Degradation of Bisphenol A in Wastewater Using Nanometer TiO2 Film

Article Preview

Abstract:

In this paper, the nanometer TiO2 film is prepared by sol-gel method, using tetrabutyl titanate as source, ethanol as solvent. A transparent sol aging in air 30min, titanium dioxide films are prepared by using spin coating method. The BPA solution is degraded by the nanometer TiO2 film. The photocatalytic degradation efficiency is influenced by the initial BPA concentration, the solution pH, irradiation time and the UV irradiation intensity. The short degradation time shows that the nanometer TiO2 film can be used as an easy and efficient method to degrade the BPA solution.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

1815-1818

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.V. Krishnan, P. Stathis, S.F. Permuth, L. Tokes and D. Feldman. Endocrinology. Vol. 131 (1993) 2279.

Google Scholar

[2] Y. Takai, O. Tsutsumi, Y. Ikezuki, Y. Kamei, Y. Osuga, T. Yano and Y. Taketan. Reprod. Toxicol. Vol. 15 (2001) 71.

DOI: 10.1016/s0890-6238(00)00119-2

Google Scholar

[3] Y. Ohko, I. Ando, C. Niwa, T. Tatsuma, T. Yamamura, T.Nakashima, Y. Kubota and A. Fujishima. Environ. Sci. Technol. Vol. 35 (2001) 2365.

DOI: 10.1021/es001757t

Google Scholar

[4] P.B Dorn, C. Chou and J. Gentempo. J. Chemosphere. Vol. 16 (1987) 1501.

Google Scholar

[5] J. Spivack, T.K. Leib and J.H. Lobos. J. Biol. Chem., Vol. 269 (1994) 7323.

Google Scholar

[6] J. Hoigue and H. Bader. Water Res. Vol. 17 (1983) 173.

Google Scholar

[7] J. Hoigue, H. Bader, W.R. Haag and J. Taehein. Water Res. Vol. 19 (1985) 993.

Google Scholar

[8] M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann. Chem. ReV. Vol. 95 (1995) 69.

Google Scholar

[9] A. Mills and S.L. Hunte. J. Photochem. Photobiol. A. Vol. 108 (1997) 1.

Google Scholar

[10] H. Usui, O. Miyamoto, T. Nomiyama, Y. Horie and T. Miyazaki. Sol. Energy Mater. Sol. Cells. Vol. 86 (2005) 123.

Google Scholar

[11] P. Theron, P. Pichat, C. Guillard, C. Petrier and T. Chopin. Phys. Chem. Chem. Phys. Vol. 1 (1999) 4663.

Google Scholar

[12] Y. Ohko, D.A. Tryk, K. Hashimoto and A. Fujishima. J. Phys. Chem. B. Vol. 102 (1998) 1724.

Google Scholar

[13] Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto and A. Fujishima. J. Photochem. Photobiol. A. Vol. 106 (1997) 51.

Google Scholar

[14] K. Sunada, Y. Kikuchi, K. Hashimoto and A. Fujishima. Environ. Sci. Technol. Vol. 32 (1998) 726.

Google Scholar

[15] Y.C. Chung and C.Y. Chen. Water Air Soil Pollut. Vol. 200 (2009) 191.

Google Scholar

[16] J.G. Yu, H.G. Yu and B. Cheng. Acta Chimica Sinica. Vol. 61 (2003) 1271.

Google Scholar

[17] R.H. Davis and D. Worsley. Chem. Soc. Rev. Vol. 22 (1993) 417.

Google Scholar

[18] S. Kaneco, H. Katsumata and T. Suzuki. J. Chem. Eng. Vol. 125 (2006) 59.

Google Scholar

[19] Y.Q. Hou, D.M. Zhuang and G. Zhang. Chinese Journal of Catalysis. Vol. 25 (2004) 96.

Google Scholar

[20] J.M. Wu and T.W. Zhang. J. Photochem. Photobiol. A. Chem. 162 (2004) 171.

Google Scholar