Photocatalytic Degradation of Methylene Blue Solution Using Nanometer TiO2 Film

Article Preview

Abstract:

The nanometer TiO2 film is achieved by sol-gel method, and using tetrabutyl titanate as source, ethanol as solvent, acetic acid as complexing agent. The nanometer TiO2 film is prepared by using spin coating method. Methylene blue solution is degraded by the nanometer TiO2 film. The photocatalytic degradation efficiency is influenced by the nanometer TiO2 film amount, irradiation time, the UV irradiation intensity and solution temperature. The short degradation time shows that the nanometer TiO2 film can be used as an easy and efficient method to degrade methylene blue solution.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

1823-1826

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Pagga and D. Bruan. Chemosphere. Vol. 15 (1986) 479.

Google Scholar

[2] A.B. Prevot, C. Baiocchi, M.C. Brussino, E. Pramauro, P. Savarino, V. Augugliaro, G. Marci and L. Palmisano. Environ. Sci. Technol. Vol. 35 (2001) 971.

DOI: 10.1021/es000162v

Google Scholar

[3] B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo and V. Murugesan. Chemosphere. Vol. 46 (2002) 1173.

DOI: 10.1016/s0045-6535(01)00284-3

Google Scholar

[4] M. Saquib and M. Muneer. Dyes Pigments. Vol. 56 (2003) 37.

Google Scholar

[5] N. Negishi, T. Iyoda, K. Hashimoto and A. Fujishima. Chem. Lett. Vol. 9 (1995) 841.

Google Scholar

[6] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga. Science. Vol. 293 (1995) 269.

Google Scholar

[7] M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann. Chem. Rev. Vol. 95 (1995) 69.

Google Scholar

[8] X. Fu, W.A. Zeltner and M.A. Anderson. Appl. Catal. B: Environ. Vol. 6 (1995) 209.

Google Scholar

[9] K. Tennakone and I.R.M. Kottegoda. J. Photochem. Photobiol. A: Chem. Vol. 93 (1996) 79.

Google Scholar

[10] R.W. Matthews. J. Catal. Vol. 111 (1988) 264.

Google Scholar

[11] K.I. Tennakone and R.M. Kottegoda. J. Photochem. Photobiol. A. Vol. 93 (1996) 79.

Google Scholar

[12] W.S. Kuo and Y.T. Lin. J. Environ. Sci. Health B. Vol. 35 (2000), 61.

Google Scholar

[13] J. Krýsa, M. Keppert, G. Waldner and J. Jirkovský. Electrochim. Acta. Vol. 50(2005) 5255.

DOI: 10.1016/j.electacta.2005.01.054

Google Scholar

[14] S.T. Martin, H. Herrmann, M.R. Hoffmann. J. Chem. Soc. Faraday Trans. Vol. 90 (1994) 3315.

Google Scholar

[15] S. Irmak, E. Kusvuran and O. Erbatur. Appl. Catal. B: Environ. Vol. 54 (2004) 85.

Google Scholar

[16] K. Vinodgopal, S. Hotchandani and P.V. Kamat. J. Phys. Chem. Vol. 97 (1993) 9040.

Google Scholar

[17] M.E. Osugi, G.A. Umbuzeiro, M.A. Anderson and M.V.B. Zanoni. Electrochim. Acta. Vol. 50 (2005) 5261.

Google Scholar

[18] W.H. Leng, Z. Zhang and J.Q. Zhang. J. Mol. Catal. A: Chem. Vol. 206 (2003) 239.

Google Scholar

[19] Y. Wang. Water Res. Vol. 34 (2000) 990.

Google Scholar

[20] J.M. Wu and T.W. Zhang. J. Photochem. Photobiol. A: Chem. Vol. 162 (2004) 171.

Google Scholar

[21] J.C. Yu, J.G. Yu and J.C. Zhao. Applied Catalysis B: Environmental. Vol. 36 (2002) 31.

Google Scholar

[22] J.G. Yu, H.G. Yu and B. Cheng. Acta Chimica Sinica. Vol. 61 (2003) 1271.

Google Scholar

[23] R.H. Davis and D. Worsley. Chem. Soc. Rev. Vol. 22 (1993) 417.

Google Scholar

[24] S. Kaneco, H. Katsumata and T. Suzuki. Chem. Eng. J. Vol. 125 (2006) 59.

Google Scholar

[25] P.V. Kamat. Chem. ReV. Vol. 93 (1993) 267.

Google Scholar

[26] H. Usui, O. Miyamoto, T. Nomiyama, Y. Horie and T. Miyazaki. Sol. Energy Mater. Sol. Cells. Vol. 86 (2005) 123.

Google Scholar

[27] Y. Ma and J.N. Yao. Chemosphere. Vol. 38 (1999) 2407.

Google Scholar