Electrochemical Inspection of the Interaction of Double Strand ds-DNA with Carmine on Nanometer TiO2 Doped Carbon Paste Electrode

Article Preview

Abstract:

The interaction of the single azo dye, carmine with fish-sperm dsDNA is inspected in pH 3.2 H2SO4 with electrochemical method on the surface of nanometer TiO2 modified carbon paste electrode. After the addition of dsDNA, the peak currents of oxidation and reduction peaks of carmine decrease with a positive shift of potential, indicating that intercalation interaction between the dye and dsDNA is taken place. This is consistent with fluorescence spectra results. The binding constant and binding ratio is calculated as 4.92×108 and 1:2, respectively. Furthermore, the decrease in the oxidation peak currents is found proportional to dsDNA concentration in the range of 21.24-127.44 μg·mL-1 with a detection limit of 16.04 μg•mL-1.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

37-42

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Landergren, R. Kaiser, C.T. Caskey, L. Hood, Science 242 (1988) 229.

Google Scholar

[2] P. Kara, B. Meric, A. Zeytinoglu, M. Ozsoz, Chim. Acta 518 (2004) 69.

Google Scholar

[3] K.M. Millan, S.R. Mikkelsen, Anal. Chem. 65 (1993) 2317.

Google Scholar

[4] S. Pankaj, G.K. Werner, Anal. Chem. 69 (1997) 3552.

Google Scholar

[5] P.M. Armistead, H.H. Thorp, Anal. Chem. 72 (2000) 3764.

Google Scholar

[6] T. Ohmichi, Y. Kawamoto, P. Wu, D. Miyoshi, H. Karimata, N. Sugimoto, Biochemistry 44 (2005) 7125.

Google Scholar

[7] C. R. Victor, F. Shane, M. Christian and B. D. Peter, J. Am. Chem. Soc. 125 (2003)1195.

Google Scholar

[8] Y. Cao, X. W. He, Chem. J. Chinese U. 19 (1998)714.

Google Scholar

[9] A.P. Abel, M.G. Welle, G. L. Duveneck, M. Ehrant , H. M. Widmer: Anal. Chem.68(1996) 2905.

Google Scholar

[10] Q. Feng, N.Q.Li, Y.Y. Jiang, Analytica Chimica Acta 344 (1997) 97.

Google Scholar

[11] U. Gurudas and J. P. M. Schelvis, J. Am. Chem. Soc.126(2004)12788.

Google Scholar

[12] P.Kara, A.Erdem, S. Girousi, M.Ozsoz. J. Pharm. Biomed. Anal. 38(2005) 191.

Google Scholar

[13] Wang Q,LiS,Li W,Gao F,Jiao K. 75(2009)32.

Google Scholar

[14] Kerman K, Meric B,Ozkan D,Kara P,Erdem A,Ozsoz M..Anal.Chim.Acta 450(2001) 45.

DOI: 10.1016/s0003-2670(01)01346-0

Google Scholar

[15] M.M. Ma, J.F. Song.Talanta, 80(2009)163.

Google Scholar

[16] M.T. Carter, M.Rodoriguez, A.J. Bard, J.Am.Chem.Soc.111(1989)8901.

Google Scholar

[17] D.H. Tjahjono,T.Akutsu,N.Yoshioka, H.Inoue,Biochim.Biophys.Acta 1472(1999)333.

Google Scholar

[18] Y.T. Yao, S.Y.Bi, D.Q. Song, C.Y. Qiao, D.Mu, H.Q. Zhang, Sensors and Actuators B 129(2008)799.

Google Scholar

[19] N.Q.Li, J. Min,Chin.J.Anal.Chem.17(1989)346.

Google Scholar