Effect of a Filler Surface Treatment on the Properties of Conductive Silicone Rubber Filled with Ag-Coated Cu Flakes for EMI Shielding

Article Preview

Abstract:

One of the main hurdles for the wide use of current Ag-filled conductive composites is the high cost of Ag fillers, while the challenge for low cost copper-filled composites is their poor reliability. In this study, the Ag-coated Cu flakes was chosen as conductive fillers and a surface modification with coupling agent, to achieve good bonding between the flakes and the Polydimethylsiloxane (PDMS) matrix, was applied to improve the mechanical and conductive properties of the PDMS based composites. The resulting composites obtained through modification showed an increase in hardness by 13.1% and tensile strength by 28.4% relative to the composites without coupling agent. In addition, the reliability of conducting composites was discussed and the results showed that the coupling agent played a great role in preventing the corrosion of the exposed Cu during aging. The volume resistivity of the composites, filled with untreated Ag-coated Cu flakes, increased from 0.0039Ω·cm to 0.0059Ω·cm under aging at 85°C and 85% room humidity (RH) in a temperature/humidity chamber for 48 h, in contrary, the volume resistivity shift of the composites with treated flakes was almost negligible, just changed from 0.0043Ω·cm to 0.0045Ω·cm. More importantly, the prepared conductive silicone rubber filled with Ag-coated Cu flakes with the resistivity (0.004Ω·cm) comparable to the relative commercial products can be used for electro-magnetic interference (EMI).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

15-20

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. M. Abdi, A. Kassim, H. N. M. E. Mahmud, W. M. M. Yunus, Z. A. Talib and A. R. Sadrolhosseini: J MATER SCI. Vol. 44 (2009), p.3682

Google Scholar

[2] J. M. Thomassin, I. Huynen, R. Jerome, C. Detrembleur: POLYM. Vol. 51 (2010), p.115

Google Scholar

[3] B. O. Lee, W. J. Woo, H. S. Park, H. S. Hahm, J. P. Wu, M. S. Kim: J MATER SCI. Vol. 37 (2002), p.1839

Google Scholar

[4] G. T. Mohanraj, T. Vikram, A. M. Shanmugharaj: J MATER SCI. Vol. 41 (2006), p.4777

Google Scholar

[5] N. C. Das, S. Maiti: J MATER SCI. Vol. 43 (2008), p. (1920)

Google Scholar

[6] W. Zhang, A. A. Dehghani-Sanij: J MATER SCI. Vol. 42 (2007), p.3408

Google Scholar

[7] M. S. Ram, S. Palaniappan: J MATER SCI. Vol. 39 (2004), p.3069

Google Scholar

[8] L. C. P. Almeida, A. D. Goncalves, J. E. Benedetti, P. C. M. L. Miranda, L. C. Passoni, A. F. Nogueira: J MATER SCI. Vol. 45 (2010), p.5054

Google Scholar

[9] C. L. Yuan, Y. S. Hong: J MATER SCI. Vol. 45 (2010), p.3470

Google Scholar

[10] Q. W. Tang, X. M. Sun, Q. H. L i, J. M. Lin, J. H. Wu: J MATER SCI. Vol. 44 (2009), p.849

Google Scholar

[11] L. C. Zhou, J. S. Lin, H. F. Lin, G. H. Chen: J MATER SCI. Vol. 43 (2008), p.4886

Google Scholar

[12] M. P. Dash, M. Tripathy, A. Sasmal, G. C. Mohanty, P. L. Nayak: J MATER SCI. Vol. 45 (2010), p.3858

Google Scholar

[13] X. Wu, S. Qi, J. He, G. Duan: J MATER SCI. Vol. 45 (2010), p.483

Google Scholar

[14] S. C. Kan, C. H. Kuo, H. S. Zong: J MATER SCI. Vol. 97 (2005), p.128

Google Scholar

[15] K. Ozcan, Y. Sertan, B. Goknue: J APPL POLYM SCI. Vol. 109 (2008), p.152

Google Scholar

[16] D. D. L. Chung: CARBON. Vol. 39 (2001), p.279

Google Scholar

[17] S. Yoshimoto, J. Amano, K. Miura: J MATER SCI. Vol. 45 (2010), p. (1955)

Google Scholar

[18] S. Pravion, B. Susanta: J APPL POLYM SCI. Vol. 109 (2008), p. (2054)

Google Scholar