Dielectric Relaxation in (Ba0.7Ca 0.3)TiO3-Ba(Zr0.2Ti 0.8)O3 Ceramics

Article Preview

Abstract:

In this work, effect of low sintering temperature and time on the new lead-free perovskite (Ba0.7Ca0.3)TiO3-Ba(Zr0.2Ti0.8)O3 (BCZT) solid solution ceramics have been investigated. X-ray diffraction (XRD) was used to understand the phase transition of the BCZT during heating. The Curie temperature decreased nonlinearly 43 K in BCZT ceramics. Diffuse phase transitions were observed in BCZT ceramics and the Curie-Weiss exponent (CWE) was nearly 2. The dielectric permittivity versus temperature characteristics and the γ in the modified Curie-Weiss law, as a function of the dc bias field was obtained for BCZT ceramics. The fitting of parameters (Tm vs. f ) have close agreement with the data of Vogel-Fulcher’s relationship.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

503-508

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. G. Vendik, E. K. Hollmann, A. B. Kozyrev, and A. M. Prudan, J. Supercond 12 (1999) 325.

Google Scholar

[2] A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N.Setter, J. Electroceram 11 (2003) 5.

Google Scholar

[3] X. X. Xi, H. C. Li, W. D. Si, A. A. Sirenko, I. A. Akimov, J. R. Fox, A.M. Clark, and J. H. Hao, J. Electroceram. 4 (2000) 393.

Google Scholar

[4] B. H. Park, E. J. Peterson, Q. X. Jia, J. Lee, X. Zeng, W. Si, and X. X. Xi, Appl. Phys. Lett. 78 (2001) 533.

Google Scholar

[5] F. A. Miranda, F. W. Van Keuls, R. R. Romanofsky, C. H. Mueller, S.Alterovitz, and G. Subramanyam, Integr. Ferroelectr. 42 (2002) 131.

Google Scholar

[6] J. Bellotti, E. K. Akdogan, A. Safari, W. Chang, and S. Kirchoefer, Integr.Ferroelectr. 49 (2002) 113.

Google Scholar

[7] C. Wang, B. L. Cheng, S. Y. Wang, H. B. Lu, Y. L. Zhou, Z. H. Chen, and G. Z. Yang, Appl. Phys. Lett. 84 (2004) 765.

Google Scholar

[8] Clabaugh, W.S. Swiggard, R. Gilchrist, R. Preparation, J. Res. Nat. Bur. Stds. 56 (1956) 289-291.

Google Scholar

[9] X.G. Tang, Q.X. Liu, J.Wang, H.L.W. Chan, Appl Phys A. 96 (2009) 945-952.

Google Scholar

[10] X.G. Tang, J. Wang, X.X. Wang, H.L.W. Chan, Solid State Commun 131 (2004) 163-168.

Google Scholar

[11] Sung Soo Ryu , Sang Kyun Lee , Dang Hyok Yoon, J Electroceram 18 (2007) 243-250.

Google Scholar

[12] L. Chen, L.T. Li, X.H. Wang, Z.B. Tian, Z.L. Gui, J Electroceram 21 (2008) 569-572.

Google Scholar

[13] S.M. Neirman, J.Mater.Sci. 23(1988) 3973.

Google Scholar

[14] D.Hennings, A. Schnell, G. Simon, J.Am.Ceram.Soc. 65 (1982) 539.

Google Scholar

[15] A. Dixit, S.B. Majumder, R.S. Katiyar, A.S. Bhalla, Appl. Phys.Lett. 82 (2003) 2679 .

Google Scholar

[16] W.J. Merz, Phys. Rev. 91(1953) 513.

Google Scholar

[17] D. Viehland, M.Wuttig, L.E. Cross, Ferroelectrics 120 (1991) 71.

Google Scholar

[18] K. Uchino, S. Nomura, Ferroelectr. Lett. Sect. 44 (1982) 55.

Google Scholar

[19] L.L. Hench and J.K. West, Principles of Electronics Ceramics, Wiley, NewYork (1990) p.189.

Google Scholar

[20] X.F. Long, Z.G. Ye, Appl. Phys.Lett. 90 (2007) 112905-1-3.

Google Scholar

[21] M.R. Panigrahi, S. Panigrahi, Physica B 405 (2010) 2556-2559.

Google Scholar