[1]
J. Zhang, Y. Wang, D. Wu, Effect investigation of ZnO additive on Mn–Fe/γ-Al2O3 sorbents for hot gas desulfurization. Energ. Convers. Manage. 44 (2003) 357-367.
DOI: 10.1016/s0196-8904(02)00068-7
Google Scholar
[2]
J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114 (1992) 10834-10843.
DOI: 10.1021/ja00053a020
Google Scholar
[3]
A. Davidson, Modifying the walls of mesoporous silicas prepared by supramolecular templating. Curr. Opin. Colloid Interf. Sci. 7 (2002) 92-106.
DOI: 10.1016/s1359-0294(02)00011-0
Google Scholar
[4]
L.P. Legrand, The surface properties of silicas. Wiley, New York, 1998.
Google Scholar
[5]
M.M.L.R. Carrott, A.J.E. Candeias, P.J.M. Carrott, P.I. Ravikovitch, A.V. Neimark, A.D. Sequeira, Adsorption of nitrogen, neopentane, n-hexane, benzene and methanol for evaluation of pore size in silica grades of MCM-41. Micropor. Mesopor. Mater. 47 (2001) 323-337.
DOI: 10.1016/s1387-1811(01)00394-8
Google Scholar
[6]
D.Y. Zhao, J.L. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Science 279 (1998) 548-552.
DOI: 10.1021/ja974025i
Google Scholar
[7]
D.T. On, S. Kaliaguine, Large-Pore Mesoporous Materials with Semi-Crystalline Zeolitic Frameworks. Angew. Chem. Int. Ed. 40 (2001) 3248-3251.
DOI: 10.1002/1521-3773(20010903)40:17<3248::aid-anie3248>3.0.co;2-m
Google Scholar
[8]
Y. Han, S. Wu, Y.Y. Sun, D.S. Li, D. Li, F.-S. Xiao, J. Liu, X. Zhang, Hydrothermally Stable Ordered Hexagonal Mesoporous Aluminosilicates Assembled from a Triblock Copolymer and Preformed Aluminosilicate Precursors in Strongly Acidic Media. Chem. Mater. 14 (2002) 1144-1148.
DOI: 10.1021/cm010633s
Google Scholar
[9]
S.J. Gregg, K.S.W. Sing, Adsorption, surface area, and porosity. Academic Press, London, 1982.
Google Scholar
[10]
A.H. Janssen, C.M. Yang, Y. Wang, F. Schüth, A.J. Koster, K.P. de Jong, Localization of Small Metal (Oxide) Particles in SBA-15 Using Bright-Field Electron Tomography. J. Phys. Chem. B 107 (2003) 10552-10556.
DOI: 10.1021/jp034750h
Google Scholar
[11]
K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57 (4) (1985) 603-619.
DOI: 10.1515/iupac.57.0013
Google Scholar
[12]
S.C. Christoforou, E.A. Efthimiadis, I.A. Vasalos, Sulfidation of Mixed Metal Oxides in a Fluidized-Bed Reactor. Ind. Eng. Chem. Res. 34 (1995) 83-93.
DOI: 10.1021/ie00040a006
Google Scholar
[13]
A.J.H. Maldonado, R.T. Yang, D. Chinn, C.L. Munson, Partially Calcined Gismondine Type Silicoaluminophosphate SAPO-43: Isopropylamine Elimination and Separation of Carbon Dioxide, Hydrogen Sulfide, and Water. Langmuir 19 (2003) 2193-2200.
DOI: 10.1021/la026424j
Google Scholar