Morphological and Adsorptive Characteristics of Hydrogen Sulphide on Zinc Oxide Nanoparticles Modified SBA-15

Article Preview

Abstract:

Using microwave-assisted solid-state method, a series of zinc oxide-modified mesoporous SBA-15 materials were synthesized. The desulphurization test with a gas mixture containing 0.1 vol % hydrogen sulfide was carried out on these materials. Chemicals before and after the desulphurization test were analyzed using nitrogen adsorption, XRD, EDS, TEM, ICP and other standard methods. The results suggest that zinc oxide modification can accelerate the transformation from a mesoporous to a zeolite phase. The different zinc loading results in different zinc-phase dispersions on the materials.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

518-523

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Zhang, Y. Wang, D. Wu, Effect investigation of ZnO additive on Mn–Fe/γ-Al2O3 sorbents for hot gas desulfurization. Energ. Convers. Manage. 44 (2003) 357-367.

DOI: 10.1016/s0196-8904(02)00068-7

Google Scholar

[2] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114 (1992) 10834-10843.

DOI: 10.1021/ja00053a020

Google Scholar

[3] A. Davidson, Modifying the walls of mesoporous silicas prepared by supramolecular templating. Curr. Opin. Colloid Interf. Sci. 7 (2002) 92-106.

DOI: 10.1016/s1359-0294(02)00011-0

Google Scholar

[4] L.P. Legrand, The surface properties of silicas. Wiley, New York, 1998.

Google Scholar

[5] M.M.L.R. Carrott, A.J.E. Candeias, P.J.M. Carrott, P.I. Ravikovitch, A.V. Neimark, A.D. Sequeira, Adsorption of nitrogen, neopentane, n-hexane, benzene and methanol for evaluation of pore size in silica grades of MCM-41. Micropor. Mesopor. Mater. 47 (2001) 323-337.

DOI: 10.1016/s1387-1811(01)00394-8

Google Scholar

[6] D.Y. Zhao, J.L. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Science 279 (1998) 548-552.

DOI: 10.1021/ja974025i

Google Scholar

[7] D.T. On, S. Kaliaguine, Large-Pore Mesoporous Materials with Semi-Crystalline Zeolitic Frameworks. Angew. Chem. Int. Ed. 40 (2001) 3248-3251.

DOI: 10.1002/1521-3773(20010903)40:17<3248::aid-anie3248>3.0.co;2-m

Google Scholar

[8] Y. Han, S. Wu, Y.Y. Sun, D.S. Li, D. Li, F.-S. Xiao, J. Liu, X. Zhang, Hydrothermally Stable Ordered Hexagonal Mesoporous Aluminosilicates Assembled from a Triblock Copolymer and Preformed Aluminosilicate Precursors in Strongly Acidic Media. Chem. Mater. 14 (2002) 1144-1148.

DOI: 10.1021/cm010633s

Google Scholar

[9] S.J. Gregg, K.S.W. Sing, Adsorption, surface area, and porosity. Academic Press, London, 1982.

Google Scholar

[10] A.H. Janssen, C.M. Yang, Y. Wang, F. Schüth, A.J. Koster, K.P. de Jong, Localization of Small Metal (Oxide) Particles in SBA-15 Using Bright-Field Electron Tomography. J. Phys. Chem. B 107 (2003) 10552-10556.

DOI: 10.1021/jp034750h

Google Scholar

[11] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57 (4) (1985) 603-619.

DOI: 10.1515/iupac.57.0013

Google Scholar

[12] S.C. Christoforou, E.A. Efthimiadis, I.A. Vasalos, Sulfidation of Mixed Metal Oxides in a Fluidized-Bed Reactor. Ind. Eng. Chem. Res. 34 (1995) 83-93.

DOI: 10.1021/ie00040a006

Google Scholar

[13] A.J.H. Maldonado, R.T. Yang, D. Chinn, C.L. Munson, Partially Calcined Gismondine Type Silicoaluminophosphate SAPO-43: Isopropylamine Elimination and Separation of Carbon Dioxide, Hydrogen Sulfide, and Water. Langmuir 19 (2003) 2193-2200.

DOI: 10.1021/la026424j

Google Scholar