Study on Production Performance Simulating the Low Permeability Dual Media Gas Reservoirs Pre and Post Fracturing

Abstract:

Article Preview

Mathematical model of dual media reservoir fracturing wells was established and the corresponding numerical calculation program was developed based on the special relationship between porosity and permeability of dual media low permeability gas reservoirs. Through comparative analysis of numerical results of production performance pre and post fracturing, effects of cross flow coefficient and fracture penetration ratio were well studied. The results show that: after a period of production, pressure decline of the gas well decreases linearly with time, whether fracturing or not, showing pseudo-steady-state characteristics; in the early stage, pressure drop in the vertical well pre-fracturing is an order of magnitude larger than the post-fracturing well in the logarithmic coordinate; the less developed the natural fracture is, the smaller the cross flow coefficient is, and the more significant role the fracturing plays in yield increasing; when the fracture penetration ratio is between 0.25~0.50, it has less impact on production, so it is suggested that the fracture penetration ratio is controlled at about 0.25 in actual dual media dense gas reservoirs.

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Edited by:

Jinglong Bu, Pengcheng Wang, Liqun Ai, Xiaoming Sang, Yungang Li

Pages:

86-91

DOI:

10.4028/www.scientific.net/AMR.287-290.86

Citation:

L. Y. Wang et al., "Study on Production Performance Simulating the Low Permeability Dual Media Gas Reservoirs Pre and Post Fracturing", Advanced Materials Research, Vols. 287-290, pp. 86-91, 2011

Online since:

July 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.