Influence of Reaction Temperature for the Manufacturing of Al-3Ti and Al-3B Master Alloys and their Grain Refining Efficiency on a Al-7Si Alloy

Article Preview

Abstract:

In the present work binary Al-3Ti and Al-3B master alloys were prepared at different reaction temperatures in an induction furnace by the reaction of halide salts like potassium fluoborate and potassium titanium fluoride with liquid molten Al. The indigenously developed master alloys were used for grain refinement studies of Al-7Si alloy and evaluated for their grain refining ability by CACCA studies. The present results suggest that, the reaction temperature influences the size, size distribution and morphology of the intermetallic (Al3Ti in Al-3Ti, and AlB2/AlB12 in Al-3B) particles present in Al-3Ti and Al-3B master alloys. Grain refinement studies of Al-7Si alloy reveal that, Al-3Ti and Al-3B master alloys prepared at 8000C-60 min. have shown better grain refining efficiency on Al- 7Si alloy when compared to the master alloys prepared at 9000C-60 min and 10000C-60 min respectively. In addition, B-rich Al-3B master alloy shows efficient grain refinement than Ti rich Al- 3Ti master alloy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 29-30)

Pages:

111-115

Citation:

Online since:

November 2007

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. S. Murty, S. A. Kori and M. Chakraborty: Int. Mater. Rev. Vol. 47 (2002), p.3.

Google Scholar

[2] D. G. McCartney: Int. Mater. Rev. Vol. 34 (1989), p.247.

Google Scholar

[3] Y. Birol, J. Alloys and Compounds, Article in Press, (2005).

Google Scholar

[4] Jun Wang, Shuxian He, Baode Sun, Qixin Guo and Mitsuhiro Nishio: Journal of Mater. Proc. and Technology Vol 141 (2003), p.29.

Google Scholar

[5] Spassove T, Rangelova V, Neykov N: J. alloys comp Vol 334 (2002), p.219.

Google Scholar

[6] Zhang M. X, Kelly P. M, Easton M. A, Taylore J. A: Acta. Mater., (2005), In press.

Google Scholar

[7] Lee M. S, Grieveson P: Mat. Sci. and Technol. Vol 19 (2003), p.769.

Google Scholar

[8] C. D. Mayes, D. G. McCartney and G. J. Tatlock: Mat. Sci. and Technology Vol 9 (1993), p.97.

Google Scholar

[9] A. L. Greer, P. S. Cooper, M. W. Meredith, W. Schneider, P. Schumacher, J. A. Spittle, A. Tronche: Adv. Eng. Mater. Vol 5 (2003), p.81.

DOI: 10.1002/adem.200390013

Google Scholar

[10] M. Easton, D. StJohn: Metall. Mater. Trans. Vol 36A (2005), p. (1911).

Google Scholar

[11] M. M. Guzowaski, G. K. Sigworth, D. A. Senter: Metall. Trans Vol 18A (1987), p.603.

Google Scholar

[12] L. Arneberg, L. Backeraud and H. Klang: Met. Technol. Vol 9 (1982), p.7.

Google Scholar

[13] G. K. Sigworth and M. M. Guzowaski: AFS Trans. Vol 93 (1985), p.907.

Google Scholar

[14] S. A. Kori, B. S. Murty and M. Chakraborty: Mater. Sci. and Engg. Vol A280 (2000), p.94.

Google Scholar

[15] L. F. Mondolfo, S. Farooq and C. Tse: Solidification Processing (1987) The Inst. of Metals, London, (1988) 133.

Google Scholar

[16] M. Johnsson and L. Backerud: Z. Metallkd Vol. 83 (1992), p.774.

Google Scholar

[17] S. A. Kori, B. S. Murty and M. Chakraborty: Mater. Sci. Technol. Vol 15 (1999), p.986.

Google Scholar

[18] J. Spittle, J. Keeble and M. Al Meshhedani: Light Metlas (1997), Warrendale, 795.

Google Scholar

[19] P. S. Mohanty and J. E. Gruzuleski: Acta. Metall. Mater. Vol 43 (1995).

Google Scholar