Tensile Properties and Strain Hardening Behavior of a Friction Stir Welded AA2219 Al Alloy

Abstract:

Article Preview

Microstructures, tensile properties and work hardening behavior of friction stir welded (FSWed) AA2219-T62 aluminum alloy (in its one-third bottom slice of a 20 mm thick plate) were evaluated at different strain rates. While the yield strength was lower in the FSWed joint than in the base metal, the ultimate tensile strength of the FSWed joint approached that of the base metal. In particular the FSW resulted in a significant improvement in the ductility of the alloy due to the prevention of premature failure caused by intergranular cracking along the second-phase boundary related to the presence of the network-like grain boundary phase in the base metal. While stage III and IV hardening occurred after yielding in both base metal and FSWed samples, the FSW led to stronger hardening capacity and higher strain hardening exponent and rate due to the enhanced dislocation storage capacity associated with the microstructural change after FSW. The fracture surface of the FSWed joint was mainly characterized by dimples and tearing ridges along with micropores.

Info:

Periodical:

Advanced Materials Research (Volumes 291-294)

Edited by:

Yungang Li, Pengcheng Wang, Liqun Ai, Xiaoming Sang and Jinglong Bu

Pages:

833-840

DOI:

10.4028/www.scientific.net/AMR.291-294.833

Citation:

W. F. Xu et al., "Tensile Properties and Strain Hardening Behavior of a Friction Stir Welded AA2219 Al Alloy", Advanced Materials Research, Vols. 291-294, pp. 833-840, 2011

Online since:

July 2011

Export:

Price:

$35.00

[1] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Church, P. Templesmith, C.J. Dawes, GB Patent 9, 125, 978. 8, (1991).

[2] R.S. Mishra, Z.Y. Ma: Mater. Sci. Eng. R Vol. 50R (2005), p.1.

[3] W.F. Xu, J.H. Liu, G.H. Luan, C.L. Dong: Mater. Design Vol. 30 (2009), p.3460.

[4] W.F. Xu, J.H. Liu, G.H. Luan, C.L. Dong: Mater. Design Vol. 30 (2009), p.1886.

[5] W.D. Callister Jr.: Materials Science and Engineering - An Introduction, 8th Edition, John Wiley & Sons, Inc., New York, USA, (2010).

[6] X.H. Chen, L. Lu: Scripta Mater. Vol. 57 (2007), p.133.

[7] N. Afrin, D.L. Chen, X. Cao, M. Jahazi: Scripta Mater. Vol. 57 (2007), p.1004.

[8] A. Simar, Y. Bréchet, B. de Meester, A. Denquin, T. Pardoen: Acta Mater. Vol. 55 (2007), p.6133.

[9] K.L. Nielsen, T. Pardoen, V. Tvergaard, B. de Meester, A. Simar: Int. J. Solids Struct. Vol. 47 (2010), p.2359.

[10] S.M. Chowdhury, D.L. Chen, S.D. Bhole, X. Cao, E. Powidajko, D.C. Weckman and Y. Zhou, Mater. Sci. Eng. A Vol. 527 (2010), p.2951.

[11] S.M. Chowdhury, D.L. Chen, S.D. Bhole, X Cao: Mater. Sci. Eng. A Vol. 527 (2010), p.6064.

[12] W.F. Xu, J.H. Liu, G.H. Luan, C.L. Dong: Acta Metall. Sinica Vol. 45 (2009), p.490.

[13] Wanchuck Wooa, Levente Balogh, Tamás Ungár, Hahn Chooa, Zhili Feng, Wang: Mater. Sci. Eng. A Vol. 498 (2008)308-313.

[14] A.H. Feng, D.L. Chen and Z.Y. Ma: Metall. Mater. Trans. A Vol. 41 (2010), p.957.

[15] A.H. Feng, D.L. Chen and Z.Y. Ma: Metall. Mater. Trans. A Vol. 41A (2010), p.2626.

[16] G.E. Dieter: Mechanical Metallurgy, 3rd Edition, McGraw-Hill, MA, USA, (1986).

[17] J. Luo, Z. Mei, W. Tian, Z. Wang: Mater. Sci. Eng. A Vol. 441 (2006), p.282.

[18] J.H. Hollomon: Trans. AIME Vol. 162 (1945), p.268.

[19] J.A. del Valle, F. Carreno, O.A. Ruano: Acta Mater. Vol. 54 (2006), p.4247.

[20] J.A. del Valle, O.A. Ruano: Scripta Mater. Vol. 55 (2006), p.775.

[21] C.W. Sinclair, W.J. Poole, Y. Brechet: Scripta Mater. Vol. 55 (2006), p.739.

[22] I. Kovacs, N.Q. Chinh, E. Kovacs-Csetenyi: Phys. Stat. Sol. A Vol. 194 (2002), p.3.

In order to see related information, you need to Login.