Study of Silica-Titania Mixed Flux Assisted TIG Welding Process

Article Preview

Abstract:

An activated flux assisted tungsten inert gas (TIG) welding of type 316L stainless steel was investigated. SiO2-TiO2 mixed powder was selected as the activated flux. Mixed fluxes effect on the surface appearance, weld morphology, and ferrite structure were investigated. The results showed that TIG welds surface produced with flux contributed to the formation of residues. The 80% SiO2+ 20%TiO2 mixture can produce the greatest improvement function in TIG penetration. Silica-titania mixed flux assisted TIG welding can increase the ferrite content of stainless steel weld metal.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 291-294)

Pages:

949-953

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.L. Xu, Z.B. Dong, Y.H. Wei and C.L. Yang: Theor. Appl. Fract. Mech. Vol. 48 (2007), p.178.

Google Scholar

[2] G. Rückert, B. Huneaua and S. Marya: Mater. Des. Vol. 28 No. 9 (2007), p.2387.

Google Scholar

[3] Z. Sun and D. Pan: Sci. Technol. Weld. Join. Vol. 9 No. 4 (2004), p.337.

Google Scholar

[4] J.J. Lowke, M. Tanaka and M. Ushio: J. Phys. D: Appl. Phys. Vol. 38 (2005), p.3438.

Google Scholar

[5] S. Leconte, P. Paillard, P. Chapelle, G. Henrion and J. Saindrenan: Sci. Technol. Weld. Join. Vol. 11 No. 4 (2006), p.389.

Google Scholar

[6] L.M. Liu, Z.D. Zhang, G. Song and L. Wang: Metall. Mater. Trans. A Vol. 38 (2007), p.649.

Google Scholar

[7] L. Liu and H. Sun: Mater. Res. Innovat. Vol. 12 No. 1 (2008), p.47.

Google Scholar

[8] S.M. Gurevich, V.N. Zamkov and N.A. Kushnirenko: Avtom. Svarka Vol. 9 (1965), p.1.

Google Scholar

[9] S. Leconte, P. Paillard, P. Chapelle, G. Henrion and J. Saindrenan: Sci. Technol. Weld. Join. Vol. 12 No. 2 (2007), p.120.

Google Scholar

[10] M. Marya and G.R. Edwards: Weld. J. Vol. 81, No. 12 (2002), p. 291s.

Google Scholar

[11] A. Rodrigues and A. Loureiro: Sci. Technol. Weld. Join. Vol. 10 No. 6 (2005), p.760.

Google Scholar

[12] L.M. Liu, Y. Shen and Z.D. Zhang: Sci. Technol. Weld. Join. Vol. 11, No. 4 (2006), p.398.

Google Scholar

[13] Z.D. Zhang, L.M. Liu, Y. Shen and L. Wang: Mater. Charact. Vol. 59 (2008), p.40.

Google Scholar

[14] M. Vasudevan, V. Arunkumar, N. Chandrasekhar, V. Maduraimuthu: Sci. Technol. Weld. Join. Vol. 15, No. 2 (2010), p.117.

Google Scholar

[15] T.S. Chern, K.H. Tseng and H.L. Tsai: Mater. Des. Vol. 32 No. 1 (2011), p.255.

Google Scholar

[16] R.A. Woods and D.R. Milner: Weld. J. Vol. 50 No. 4 (1971), p. 163s.

Google Scholar

[17] M. Marya and S.K. Marya: J. Mater. Eng. Perform. Vol. 7 No. 4 (1998), p.515.

Google Scholar

[18] C.R. Heiple and J.R. Roper: Weld. J. Vol. 60 No. 8 (1981), p. 143s.

Google Scholar

[19] C.R. Heiple and J.R. Roper: Weld. J. Vol. 61 No. 4 (1982), p. 97s.

Google Scholar

[20] K.H. Tseng and C.Y. Hsu: J. Mater. Process. Technol. Vol. 211 (2011), p.503.

Google Scholar