Mechanical Property of Friction Stir Welded Retardant Magnesium Alloy Joint

Article Preview

Abstract:

In order to obtain better understanding of the friction stir weldability of the magnesium alloy and provide some foundational information for improving mechanical properties of retardant magnesium alloy joints. A retardant magnesium alloy was weld using the method of friction stir welding. The influence of welding parameters on the strength of the joint was investigated. The maximum strength of 230 MPa was obtained from the joint welded at the tool rotational speed of 1000 r/min and welding speed of 750 mm/min.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 295-297)

Pages:

1929-1932

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Jinhong Zhu, Lin Li, Zhu Liu: Applied Surface Science Vol. 247 (2005), P. 300–306.

Google Scholar

[2] BL Mordike, T. Ebert: Mater Sci Eng A Vol. 302 (2001), P. 37-45.

Google Scholar

[3] T. Tsukeda, R. Uchida, M. Suzuki, J. Koike and K. Maruyama: Materials Science Forum Vol. 419-422 (2003), pp.439-444.

DOI: 10.4028/www.scientific.net/msf.419-422.439

Google Scholar

[4] Keitaro Enami, Masaki Ohara, Takanori Igarashi, Junji Fujita and Katsuyoshi Kondoh: Journal of the Japan Society of Powder and Powder Metallurgy Vol. 56 (2009), pp.717-721, in Japanese.

DOI: 10.2497/jjspm.56.717

Google Scholar

[5] SM He, XQ Zeng, LM Peng, X Gao, JF Nie and WJ Ding: Journal of Alloys and Compounds Vol. 427 (2007), pp.316-323.

Google Scholar

[6] Yoshihito Kawamura, Kentaro Hayashi, Akihisa Inoue and Tsuyoshi Masumoto: Materials Transactions Vol. 42 (2001), P.1172-1176.

Google Scholar

[7] BL Mordike: Materials Science and Engineering A, Vol. 324 (2002), pp.103-112.

Google Scholar

[8] Baixing Cheng and Zuoqian Wang: Machinery Design & Manufacture Vol. 6(2008), pp.22-24,in Chinese. E. Hersent, J.H. Driver, C. Desrayaud: Materials Science and Technology Vol. 26 (2010), pp.1345-1352.

Google Scholar

[9] Yong-Jai Kwon, Seong-Beom Shim, Dong-Hwan Park: Transactions of Nonferrous Metals Society of China Vol. 19 (2009), p. s23-s27.

DOI: 10.1016/s1003-6326(10)60239-7

Google Scholar

[10] S. Rajakumar, C. Muralidharan, V. Balasubramanian: Materials and Design Vol. 32 (2011), pp.535-549.

Google Scholar

[11] K Nakata, S Inoki, Y Nagano, T Hashimoto, S Johgan and M Ushio: J Jpn Inst Light Metals Vol.51 (2001), pp.528-533, in Japanese.

DOI: 10.2464/jilm.51.528

Google Scholar

[12] C.I. Chang, C.J. Lee, J.C. Huang: Scripta Materialia Vol. 51 (2004), pp.509-514.

Google Scholar

[13] SHC Park, YS Sato, H Kokawa: Scripta Materialia Vol. 49 (2003), pp.161-166.

Google Scholar

[14] JA Esparza, WC Davis, LE Murr. ournal of Materials Science Vol. 38 (2003), pp.941-952.

Google Scholar

[15] Rong-Chang Zeng, Jun Chen, Wolfgang Dietzel, Rudolf Zettler, Jorge F dos Santos, M. Lucia Nascimento, Karl Ulrich Kainer: Corrosion Science Vol. 51 (2009), pp.1738-1746.

DOI: 10.1016/j.corsci.2009.04.031

Google Scholar

[16] G. Padmanaban and V. Balasubramanian: Int J Adv Manuf Technol 49 (2010), p.111–121.

Google Scholar