Influence of Die Angle on the Extrusion Behavior of 6061Al Matrix Composite Reinforced with SnO2-Coated Aluminum Borate Whisker

Article Preview

Abstract:

The 6061Al matrix composites reinforced with SnO2-coated aluminum borate whisker were fabricated using squeeze casting method. The composite were extruded successfully at 350°Cwith different die angles. The experiment results illustrate that the die angle have important influences on the extrusion process. The surface quality of extruded composites was improved and the extrusion load was reduced with die angle increasing from 30 to 60 degree. The <111> and <100> textures for aluminum matrix were formed in all extruded composites. The dispersion degree of the <111> texture, the alignment degree and the average length of whiskers increases with die angle increasing. There is a suitable die angle for the optimization of the extrusion process of the present composite.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 299-300)

Pages:

700-703

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.W. Clyne , P.J. Withers: An introduction to metal matrix composites (Cambridge University Press, Cambridge, UK, 1993).

Google Scholar

[2] K. Suganuma, T. Fujita, N. Suzuki and K. Niihara: J. Mater. Sci. Lett. Vol. 9 (1990), p.635.

Google Scholar

[3] W.D. Fei, Y.B. Li, Mater. Sci. Eng. A Vol. 379 (2004), p.27.

Google Scholar

[4] S.V. Prasad, and R. Asthana: Tribol. Lett. Vol. 17 (2004), p.445.

Google Scholar

[5] C.A. Standford-Beale, T.W. Clyne: Comp. Sci. Technol. Vol. 35 (1989), p.121.

Google Scholar

[6] L. Geng, S. Ochiai, J.Q. Hu, C.K. Yao: Mater. Sci. Eng. A Vol. 246 (1998), p.302.

Google Scholar

[7] W.D. Fei, W.Z. Li, C.K. Yao: J. Mater. Sci. Vol. 37 (2002), p.211.

Google Scholar

[8] W.G. Chu, J. Hu, W.D. Fei, C.K. Yao: J. Mater. Sci. Vol. 34 (1999), p.565.

Google Scholar

[9] N.H. Kim, C.G. Kang, B.M. Kim: Int. J. Mech. Sci. Vol. 43 (2001), p.1507.

Google Scholar

[10] S.H. Hong, K.H. Chung, K.H. Lee: Mater. Sci. Eng. A Vol. 206 (1996), p.225.

Google Scholar

[11] M. Bayramoglua, H. Polat, N. Gerena: J. Mater. Process. Tech. Vol. 205 ( 2008 ), p.394.

Google Scholar

[12] Z.J. Li, W.D. Fei, H.Y. Yue, L.D. Wang: Comp. Sci. Technol. Vol. 67 (2007), p.963.

Google Scholar

[13] C.G. Jiao, Z.K. Yao, and Y.F. Han: Chin.J. Met. Sci. Technol. Vol. 8 (1992), p.25.

Google Scholar

[14] A. Borrego, R. Fernández, M. C. Cristina, J. Ibáñez, G. González-Doncel: Comp. Sci. Technol. Vol. 62 (2002), p.731.

Google Scholar

[15] J. Hu, X.F. Wang, S.W. Tang: Comp. Sci. Technol. Vol. 68 (2008), p.2297.

Google Scholar

[16] W.D. Fei, C.Q. Liu, M.H. Ding, W. L. Li, L.D. Wang: Rev. Sci. Instrum. Vol. 80 (2009), p.1.

Google Scholar

[17] J.X. Xie, J.A. Liu: Metal extrusion theory and technology (Metallurgical Industry Press, Beijing, 2001).

Google Scholar

[18] L.J. Yao and H. Fukunaga: Scripta Mater, Vol. 36 (1997), p.1267.

Google Scholar

[19] E.A. Calnan: Acta Metall. Vol. 2(1954), p.865.

Google Scholar