Effect of SnO2 Coating on the Low Temperature Extrusion of 6061Al Matrix Composite Reinforced with Aluminum Borate Whisker

Article Preview

Abstract:

The 6061Al matrix composites reinforced with SnO2-coated aluminum borate whisker were fabricated using squeeze casting method. The composites with different SnO2 coating contents were extruded successfully at 350°C with the extrusion rate of 18mm/s. The results show that the Sn particles at the interface as liquid state at extrusion temperature result in the reduction of the extrusion load and the decrease of the probability of whisker fracture during hot deformation process. Moreover, unlike many surface cracks can be seen in the extruded composite without whisker coating, the surface crack-free extruded rods can be obtained for composites with whisker coating. The ABOW/SnO/6061Al composites tensile properties increased obviously after extrusion.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 299-300)

Pages:

692-695

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Suganuma, T. Fujita, N. Suzuki and K. Niihara: J. Mater Sci Lett Vol. 9 (1990), p.635.

Google Scholar

[2] W.D. Fei, Y.B. Li, Mater: Sci. Eng. A Vol. 379 (2004), p.27.

Google Scholar

[3] T.W. Clyne P.J. Withers, An introduction to metal matrix composites, London: Cambridge University Press, (1993).

Google Scholar

[4] C.A. Standford-Beale, T.W. Clyne: Comp. Sci. Technol Vol. 35 (1989), p.121.

Google Scholar

[5] L. Geng, S. Ochiai, J.Q. Hu and C.K. Yao: Mater. Sci. Eng. A Vol. 246 (1998), p.302.

Google Scholar

[6] W.D. Fei, W.Z. Li and C.K. Yao: J. Mater. Sci Vol. 37 (2002), p.211.

Google Scholar

[7] W.G. Chu, J. Hu, W.D. Fei and C.K. Yao: J. Mater. Sci Vol. 34 (1999), p.565.

Google Scholar

[8] S.H. Hong, K.H. Chung and K.H. Lee: Mater. Sci. Eng A Vol. 206(2) (1996), p.225.

Google Scholar

[9] S. Kalpakjian, in: Manufacturing Process for Engineering Materials, Addison-Wesley, Reading, MA, 1984, p.365.

Google Scholar

[10] M. Bayramoglua, H. Polat and N. Gerena: J. Mater. Process. Tech Vol. 205 (2008), p.394.

Google Scholar

[11] C.G. Kang, N.H. Kim and B.M. Kim: J. Mater. Process. Tech Vol. 100 (2000), p.53.

Google Scholar

[12] T.P.D. Rajan, R.M. Pillai and B.C. Pai: J. Mater. Sci Vol. 33 (1998), p.3491.

Google Scholar

[13] H.Y. Yue, L.D. Wang and W.D. Fei: Mater. Sci. Eng. A Vol. 486 (2008), p.409.

Google Scholar

[14] Z.J. Li, W.D. Fei, H.Y. Yue and L.D. Wang: Comp. Sci. Technol Vol. 67 (2007), p.963.

Google Scholar

[15] J. Hu, X.F. Wang and S.W. Tang: Comp. Sci. Technol Vol. 68 (2008), p.2297.

Google Scholar

[16] J. Hu, X.F. Wang and G.Y. Liu: Mater. Sci. Eng. A Vol. 527 (2010), p.657.

Google Scholar

[17] L.F. Mondolfo, London: ButterWorths/Boston Press, (1976), p.384.

Google Scholar

[18] W.D. Fei, Y.B. Li: Mater. Sci. Eng. A Vol. 379 (2004), p.27.

Google Scholar