Young’s Modulus Detection for Ultra-Thin Film by LSAWs Technique with Wavelet and FIR Filter De-Noising

Article Preview

Abstract:

Laser-generated surface acoustic waves (LSAWs) technique is a feasible method to determine the Young’s modulus of thin films. The raw surface acoustic wave (SAW) signals detected from the experimental system are often contaminated by external noises. A novel de-noising method is proposed in this paper with wavelet and FIR filter. The wavelet threshold de-noising is essential to reduce the high frequency noise components in the raw SAW signals, while FIR filter can remove the useless low frequency noises. The useful bandwidth of the detected signal ranges from 50 to 190 MHz. Young’s modulus of the detected samples can be obtained by matching the experimental dispersive curves with the theoretical calculated ones via an improved least square fitting method. The Young’s moduli of four low dielectric constant (low-k) samples detected in the measurement are 7.1, 6.8, 1.1 and 1.0 GPa, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 301-303)

Pages:

623-628

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Maex, M. R. Baklanov, D. Shamiryan, F. Lacopi, S. H. Brongersma and Z. S. Yanovitskaya: J. Appl. Phys. Vol. 93 (2003), p.8793.

DOI: 10.1063/1.1567460

Google Scholar

[2] K. Hamioud, V. Arnal, A. Farcy and et al: Microelectron. Eng. Vol. 87 (2010), p.316.

Google Scholar

[3] Y. Nakata, S. Ozaki and H. Kudo: FUJITSU Sci. Tech. J. Vol. 46 (2010), p.120.

Google Scholar

[4] J. H. Choi and C. S. Korach: J. Electrochem. Soc. Vol. 156 (2009), p.961.

Google Scholar

[5] R. J. Nay, O. L. Warren, D. Yang and T. J. Wyrobek: Microelectron. Eng. Vol. 75 (2004), p.103.

Google Scholar

[6] O. Lefeuvre, W. Pang, P. Zinin, J. D. Comins, A. G. Every, G. A. D. Briggs, B. D. Zeller and G. E. Thompson: Thin Solid Films Vol. 350 (1999), p.53.

DOI: 10.1016/s0040-6090(99)00240-0

Google Scholar

[7] D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele and M. Griepentrog: Thin Solid Film Vol. 332 (1998), p.157.

DOI: 10.1016/s0040-6090(98)00988-2

Google Scholar

[8] X. Xiao, N. Hata, K. Yamada and T. Kikkawa: Jpn. J. Appl. Phys. Vol. 43 (2004), p.508.

Google Scholar

[9] X. Xiao, X. M. Shan, Y. Kayaba, K. Kohmura, H. Tanaka and T. Kikkawa: Microelectron. Eng. Vol. 88 (2011), p.666.

Google Scholar

[10] T. Takimura, N. Hata, S. Takada and T. Yoshino: Jpn. J. Appl. Phys. Vol. 47 (2008), p.5400.

Google Scholar

[11] D. C. Hurley, V. K. Tewary and A. J. Richards: Meas. Sci. Technol. Vol. 12 (2001), p.1486.

Google Scholar

[12] D. L. Donoho: IEEE T. Inform. Theory Vol. 41 (1995), p.613.

Google Scholar

[13] X. M. Shan, X. Xiao and Y. L. Liu, in: 10th IEEE International Conference on Solid-State and Integrated Circuit Technology Proceedings, pp.1000-1002, IEEE Press (2010).

Google Scholar