Molecular Dynamics Deformation Simulation of Carbon Nanotube Probes

Article Preview

Abstract:

Understanding of the prosperities of the carbon nanotubes (CNTs) probes is crucial when measuring surface using atomic force microscopy (AFM). In this paper, we investigate the deformation of CNTs by adding lateral forces based on molecular dynamics (MD) simulation. In the simulation, Tersoff many-body potential function is used to describe the interaction between atoms. The movement of CNTs is periodic vibration, which is different from traditional material. We analyzed the vibration of different CNTs including single-walled carbon nanotubes (SWCNTs) and sharpened CNTs. Similarities and differences between different CNTs during the deformation are illustrated. It is shown that sharpened CNTs have better stiffness without declining the resolution of AFM. By analyzing the results obtained from the MD simulation, it is found that the sharpened CNTs may be more suitable as AFM probes.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 301-303)

Pages:

80-86

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hafner, J. H,; Cheung, C. -L.; Wooley, A. T.; Lieber, C. M.; Structural and Functional Imaging With Carbon Nanotube AFM Probes, Prog. Biophys. Mol. Biol. 2001, 77, pp.73-110.

DOI: 10.1016/b978-008044031-6/50037-9

Google Scholar

[2] EW Wong, PE Sheehan, CM Lieber, Nanobeam mechanics: Elasticity, strength, and toughness of nanorode and nanotubes, Science, 1997, 277, p.1971-(1975).

DOI: 10.1126/science.277.5334.1971

Google Scholar

[3] Iijima S.; Helical microtubes of graphitic carbon, Nature, 1991, 354, pp.56-58.

Google Scholar

[4] H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Nature 384(1996) 147.

Google Scholar

[5] LU J P. Elastic properties of single and multilayered nanotubes[J]. Phys Rev Lett, 1997, 79, pp.1297-1300.

Google Scholar

[6] E.S. Snow, P.M. Campbell, J.P. Novak, Appl. Phys. Lett. 80 (2002) (2002).

Google Scholar

[7] Dubourg, F.; Aime¡ä, J. P. Surf. Sci. 2000, 466, 137.

Google Scholar

[8] Lee, S. I.; Howell, S. W.; Raman, A.; Reifenberger, R.; Nguyen, C. V.; Meyyappan, M. Nanotechnology 2004, 15, 416.

Google Scholar

[9] Shapiro, I. R.; Solares, S. D.; Esplandiu, M. J.; Wade, L. A.; Goddard,W. A.; Collier, C. P. J. Phys. Chem. B 2004, 108, 13613.

Google Scholar

[10] Solares, S. D.; Matsuda, Y.; Goddard, W. A., III. J. Phys. Chem. B 2005, 109, 16658.

Google Scholar

[11] Solares, S. D.; Esplandiu, M. J.; Goddard, W. A.; Collier, C. P. J. Phys. Chem. B 2005, 109, 11493.

Google Scholar

[12] A. Kutana, K. P. Giapis, J.Y. Chen, and C. P. Collier, Amplitude response of single-wall carbon nanotube probes during tapping atomic force microscopy modeling and experiment, Nano letters, 2006, Vol. 6, No. 8, 1669-1673.

DOI: 10.1021/nl060831o

Google Scholar

[13] A. N. Jiang, S. Gao, X. L. Wei, X. L. Liang, and Q. Chen, Amplitude Response of Multiwalled Carbon Nanotube Probe with Controlled Length during Tapping Mode Atomic Force Microscopy, J. Phys. Chem. C 2008, 112, 15631-15636.

DOI: 10.1021/jp804481g

Google Scholar

[14] Seiji AKITA, Masakaki OHASHI and Yoshikazu NAKAYAMA, Mechanical Properties of Sharpened Carbon Nanotube Tips, Japanese Journal of Applied Physics, Vol. 44, No. 4A, 2005, 1637-1640.

DOI: 10.1143/jjap.44.1637

Google Scholar

[15] Lennard-Jones, J. E. (1924), On the Determination of Molecular Fields, Proc. R. Soc. Lond. A 106 (738): 463–477.

Google Scholar

[16] Muhammad A. Hawwa, Hussain M. Al-Qahtani, Nonlinear oscillations of a double-walled carbon nanotube, Computational Materials Science 48 (2010) 140-143.

DOI: 10.1016/j.commatsci.2009.12.020

Google Scholar